Question

(a) Show that A ⊆ NG(A) is not necessarily true when A is not a subgroup...

(a) Show that A ⊆ NG(A) is not necessarily true when A is not a subgroup of G, but just a subset.

(b) Let H be a subgroup of order 2 in G. Show that NG(H) = CG(H).

(c) Show that H ≤ CG(H) if and only if H is abelian.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
(a) Show that H =<(1234)> is a normal subgroup of G=S4 (b) Is the quotient group...
(a) Show that H =<(1234)> is a normal subgroup of G=S4 (b) Is the quotient group G/H abelian? Justify?
Show that if G is a group, H a subgroup of G with |H| = n,...
Show that if G is a group, H a subgroup of G with |H| = n, and H is the only subgroup of G of order n, then H is a normal subgroup of G. Hint: Show that aHa-1 is a subgroup of G and is isomorphic to H for every a ∈ G.
Let G be a finite group and let H be a subgroup of order n. Suppose...
Let G be a finite group and let H be a subgroup of order n. Suppose that H is the only subgroup of order n. Show that H is normal in G. Hint: Consider the subgroup aHa-1 of G. Please explain in detail!
Let G be a finite group, and suppose that H is normal subgroup of G. Show...
Let G be a finite group, and suppose that H is normal subgroup of G. Show that, for every g ∈ G, the order of gH in G/H must divide the order of g in G. What is the order of the coset [4]42 + 〈[6]42〉 in Z42/〈[6]42〉? Find an example to show that the order of gH in G/H does not always determine the order of g in G. That is, find an example of a group G, and...
Let G be a finite Abelian group and let n be a positive divisor of|G|. Show...
Let G be a finite Abelian group and let n be a positive divisor of|G|. Show that G has a subgroup of order n.
Let G be a non-abelian group of order p^3 with p prime. (a) Show that |Z(G)|...
Let G be a non-abelian group of order p^3 with p prime. (a) Show that |Z(G)| = p. (b) Suppose a /∈ Z(G). Show that |NG(a)| = p^2 . (c) Show that G has exactly p 2 +p−1 conjugacy classes (don’t forget to count the classes of the elements of Z(G)).
Prove that if A is a subgroup of G and B is a subgroup of H,...
Prove that if A is a subgroup of G and B is a subgroup of H, then the direct product A × B is a subgroup of G × H. Show all steps. Note that AXB is nonempty since the identity e is a part of A X B. Remains only to show that A X B is closed under multiplication and inverses.
Let N be a normal subgroup of G. Show that the order 2 element in N...
Let N be a normal subgroup of G. Show that the order 2 element in N is in the center of G if N and Z_4 are isomorphic.
Let G and G′ be two isomorphic groups that have a unique normal subgroup of a...
Let G and G′ be two isomorphic groups that have a unique normal subgroup of a given order n, H and H′. Show that the quotient groups G/H and G′/H′ are isomorphic.
1) Let G be a group and N be a normal subgroup. Show that if G...
1) Let G be a group and N be a normal subgroup. Show that if G is cyclic, then G/N is cyclic. Is the converse true? 2) What are the zero divisors of Z6?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT