Question

Suppose y(t) is governed by ODE t3y'''(t) + 6t2y''(t) + 4ty'(t) = 0. Solve this ODE...

Suppose y(t) is governed by ODE t3y'''(t) + 6t2y''(t) + 4ty'(t) = 0. Solve this ODE by performing the following procedure: 1) Let x = ln(t) and set y(t) = φ(x) = φ(ln(t)), 2) Use chain rule of differentiation to calculate derivatives y in terms derivatives of φ, 3) by appropriate substitution, construct an ODE governing φ(x) and solve it, 4) use this φ(x) to get back y(t).

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Solve the ODE y"+3y'+2y=(e^-t)(sin2t) when y'(0)=y(0)=0
Solve the ODE y"+3y'+2y=(e^-t)(sin2t) when y'(0)=y(0)=0
Consider ODE: (xy-1)dy+x^2dx=0. Prove that φ (x, y) = 1/x it is an integrating factor. Solve...
Consider ODE: (xy-1)dy+x^2dx=0. Prove that φ (x, y) = 1/x it is an integrating factor. Solve the ODE.
1. Solve the following ODE for x(t) in terms of m, k, A, B, and ?....
1. Solve the following ODE for x(t) in terms of m, k, A, B, and ?. ??̈ + ?? = ????(??) + ????(??) ?(0) = ?̇(0) = 0 2. Solve the following coupled ODE’s for x(t) and y(t). ?̇ + ?? = 1 ?̇ + ?? = 0 ?(0) = ?(0) = 0
Solve the IVP with Cauchy-Euler ODE: x^2 y''+3xy'+4y=0; y(1)=0, y’(1)=−2
Solve the IVP with Cauchy-Euler ODE: x^2 y''+3xy'+4y=0; y(1)=0, y’(1)=−2
Solve the following differential equations 1. cos(t)y' - sin(t)y = t^2 2. y' - 2ty =...
Solve the following differential equations 1. cos(t)y' - sin(t)y = t^2 2. y' - 2ty = t Solve the ODE 3. ty' - y = t^3 e^(3t), for t > 0 Compare the number of solutions of the following three initial value problems for the previous ODE 4. (i) y(1) = 1 (ii) y(0) = 1 (iii) y(0) = 0 Solve the IVP, and find the interval of validity of the solution 5. y' + (cot x)y = 5e^(cos x),...
Solve the IVP with Cauchy-Euler ODE: x^2 y''+ xy'−16y = 0; y(1) = 4, y'(1) =...
Solve the IVP with Cauchy-Euler ODE: x^2 y''+ xy'−16y = 0; y(1) = 4, y'(1) = 0
Problem 8 Let a(t) =/= b(t) be given. The factorization for a second order ODE is...
Problem 8 Let a(t) =/= b(t) be given. The factorization for a second order ODE is commutative if (D + a(t) I) (D + b(t) I) y = (D + b(t) I) (D + a(t) I) y. • Find condition on a(t) and b(t) so that the factorization is commutative. • Find the fundamental set of solutions for a second order ODE that has a commutative factorization. • Use the above results to find the fundamental set of solutions of...
1. f(x, y, z) = 2x-1 − 3xyz2 + 2z/ x4 2. f(s, t) = e-bst...
1. f(x, y, z) = 2x-1 − 3xyz2 + 2z/ x4 2. f(s, t) = e-bst − a ln(s/t) {NOTE: it is -bst2 } Find the first and second order partial derivatives for question 1 and 2. 3. Let z = 4exy − 4/y and  x = 2t3 , y = 8/t Find dz/dt using the chain rule for question 3.
Use the Chain Rule to find dz/dt. (Enter your answer only in terms of t.) z=sqrt(1+x^2+y^2),...
Use the Chain Rule to find dz/dt. (Enter your answer only in terms of t.) z=sqrt(1+x^2+y^2), x=ln(t), y=cos(t) dz/dt=
Let z(s,t) z(s,t) be a differentiable function of two variable s and t with continuous first...
Let z(s,t) z(s,t) be a differentiable function of two variable s and t with continuous first partial derivatives. Assume further that s=s(x,y), t=t(x,y) are differentiable functions of variables x and y . (a) find the general chain rule chain rule for (∂z/∂x)y . Your subscripts will be marked. (b) Let equations F(x,y,s,t)=y+x^2+cos(t)−sin(s)+1=0, G(x,y,s,t)=x+y^2−st−2=0, implicitly define s , and t as functions of x and y . Compute ∂s/∂x)y ∂t/∂x)y at the point P(x,y,s,t)=(1,−1,π,0). (c) Let now z(s,t)=s^2+t. By using the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT