Question

Consider the following linear programming problem. Maximize P = 4x + 6y + 9z subject to...

Consider the following linear programming problem.

Maximize

P = 4x + 6y + 9z

subject to the constraints

   2x + 3y + z 900
3x + y + z 350
4x + 2y + z 400

 x ≥ 0, y ≥  0, z ≥  0

Write the initial simplex tableau.

x y z s1 s2 s3 P Constant
900
350
400
0

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the following linear programming problem. Maximize P = 3x + 9y subject to the constraints...
Consider the following linear programming problem. Maximize P = 3x + 9y subject to the constraints 3x + 8y ≤ 1 4x − 5y ≤ 4 2x + 7y ≤ 6  x ≥ 0, y ≥  0 Write the initial simplex tableau. x y s1 s2 s3 P Constant 1 4 6 0
Use the simplex method to solve the linear programming problem. Maximize P = 4x + 3y...
Use the simplex method to solve the linear programming problem. Maximize P = 4x + 3y subject to 3x + 4y ≤ 30 x + y ≤ 9 2x + y ≤ 17 x ≥ 0, y ≥ 0  
Use the simplex method to solve the linear programming problem. Maximize P = x + 2y...
Use the simplex method to solve the linear programming problem. Maximize P = x + 2y + 3z subject to 2x + y + z ≤ 14 3x + 2y + 4z ≤ 24 2x + 5y − 2z ≤ 10 x ≥ 0, y ≥ 0, z ≥ 0   The maximum is P =   at (x, y, z) = ( ) .
Solve the linear programming problem by the method of corners. Maximize P = 2x + 6y...
Solve the linear programming problem by the method of corners. Maximize P = 2x + 6y subject to 2x + y ≤ 16 2x + 3y ≤ 24 y ≤  6 x ≥ 0, y ≥ 0 The maximum is P = at (x, y) = .
Use the simplex method to solve the linear programming problem. Maximize   P = 6x + 5y...
Use the simplex method to solve the linear programming problem. Maximize   P = 6x + 5y subject to   3x + 6y ≤ 42 x + y ≤ 8 2x + y ≤ 12 x ≥ 0, y ≥ 0   The maximum is P = at (x, y) =
2. Solve the linear programming problem by the simplex method. Maximize 40x + 30y subject to...
2. Solve the linear programming problem by the simplex method. Maximize 40x + 30y subject to the constraints: x+y≤5 −2x + 3y ≥ 12 x ≥ 0, y ≥ 0
Solve the linear programming problem by the simplex method. Maximize   P = 5x + 4y subject...
Solve the linear programming problem by the simplex method. Maximize   P = 5x + 4y subject to   3x + 5y ≤ 214 4x + y ≤ 172 x ≥ 0, y ≥ 0    The maximum is P = at (x, y) = .
Solve the linear programming problem by the method of corners. Maximize P = 2x + 3y    ...
Solve the linear programming problem by the method of corners. Maximize P = 2x + 3y     subject to   x + y ≤ 10 3x + y ≥ 12 −2x + 3y ≥ 11 x ≥ 0, y ≥ 0
Solve the linear programming problem by the method of corners. Minimize C = 4x + 6y...
Solve the linear programming problem by the method of corners. Minimize C = 4x + 6y subject to 4x + y ≥ 38 2x + y  ≥ 30 x + 3y  ≥ 30 x ≥ 0, y ≥ 0 The minimum is C = at (x, y) =
Consider the following linear programming problem: Maximize 12X + 10Y Subject to: 4X + 3Y <=...
Consider the following linear programming problem: Maximize 12X + 10Y Subject to: 4X + 3Y <= 480 2X + 3Y <= 360 all variables >= 0 The maximum possible value for the objective function is Selected Answer: c. 1520.