Question

Use the root-solving method to obtain the root of x^4-10x^3-50x+24=0 within the error range of 10^-4....

Use the root-solving method to obtain the root of x^4-10x^3-50x+24=0 within the error range of 10^-4. (Put in the initial x^(0)=3.5 / Please make the significant figure 10^-5.)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Find the root of the function: f(x)=2x+sin⁡(x)-e^x, using Newton Method and initial value of 0. Calculate...
Find the root of the function: f(x)=2x+sin⁡(x)-e^x, using Newton Method and initial value of 0. Calculate the approximate error in each step. Use maximum 4 steps (in case you do not observe a convergence).
Use the secant method to estimate the root of f(x) = -56x + (612/11)*10-4 x2 -...
Use the secant method to estimate the root of f(x) = -56x + (612/11)*10-4 x2 - (86/45)*10-7x3 + (3113861/55) Start x-1= 500 and x0=900. Perform iterations until the approximate relative error falls below 1% (Do not use any interfaces such as excel etc.)
f(x)=10-x^3-3cosx=0 use newton iteration to estimate the root,
f(x)=10-x^3-3cosx=0 use newton iteration to estimate the root,
Use Newton’s method to find solutions accurate to within 10−4 for x − 0.8 − 0.2...
Use Newton’s method to find solutions accurate to within 10−4 for x − 0.8 − 0.2 sin x = 0, x in[0, π/2]. (Choose ?0=π/4).
Q1: Use bisection method to find solution accurate to within 10^−4 on the interval [0, 1]...
Q1: Use bisection method to find solution accurate to within 10^−4 on the interval [0, 1] of the function f(x) = x−2^−x Q3: Find Newton’s formula for f(x) = x^(3) −3x + 1 in [1,3] to calculate x5, if x0 = 1.5. Also, find the rate of convergence of the method. Q4: Solve the equation e^(−x) −x = 0 by secant method, using x0 = 0 and x1 = 1, accurate to 10^−4. Q5: Solve the following system using the...
: Consider f(x) = 3 sin(x2) − x. 1. Use Newton’s Method and initial value x0...
: Consider f(x) = 3 sin(x2) − x. 1. Use Newton’s Method and initial value x0 = −2 to approximate a negative root of f(x) up to 4 decimal places. 2. Consider the region bounded by f(x) and the x-axis over the the interval [r, 0] where r is the answer in the previous part. Find the volume of the solid obtain by rotating the region about the y-axis. Round to 4 decimal places.
Let f(x)=sin(x)+x^3-2. Use the secant method to find a root of f(x) using initial guesses x0=1...
Let f(x)=sin(x)+x^3-2. Use the secant method to find a root of f(x) using initial guesses x0=1 and x1=4. Continue until two consecutive x values agree in the first 2 decimal places.
Newton's method: For a function ?(?)=ln?+?2−3f(x)=ln⁡x+x2−3 a. Find the root of function ?(?)f(x) starting with ?0=1.0x0=1.0....
Newton's method: For a function ?(?)=ln?+?2−3f(x)=ln⁡x+x2−3 a. Find the root of function ?(?)f(x) starting with ?0=1.0x0=1.0. b. Compute the ratio |??−?|/|??−1−?|2|xn−r|/|xn−1−r|2, for iterations 2, 3, 4 given ?=1.592142937058094r=1.592142937058094. Show that this ratio's value approaches |?″(?)/2?′(?)||f″(x)/2f′(x)| (i.e., the iteration converges quadratically). In error computation, keep as many digits as you can.
Use C++ in Solving Ordinary Differential Equations using a Fourth-Order Runge-Kutta of Your Own Creation Assignment:...
Use C++ in Solving Ordinary Differential Equations using a Fourth-Order Runge-Kutta of Your Own Creation Assignment: Design and construct a computer program in C++ that will illustrate the use of a fourth-order explicit Runge-Kutta method of your own design. In other words, you will first have to solve the Runge-Kutta equations of condition for the coefficients of a fourth-order Runge-Kutta method.   See the Mathematica notebook on solving the equations for 4th order RK method.   That notebook can be found at...
Use Newton's method to find the number   arcsin(1/3) rounded to 14 digits after the decimal point by...
Use Newton's method to find the number   arcsin(1/3) rounded to 14 digits after the decimal point by solving numerically the equation sin(x)=1/3 on the interval [0,pi/6]. 1) Determine f(a) and f(b). 2) Find analytically f', f'' and check if f '' is continuous on the chosen interval [a,b]. 3) Determine the sign of f' and f '' on [a,b] using their plots. 4) Determine using the plot the upper bound C and the lower bound c for |f'(x)|. 5) Calculate the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT