Question

Let F be a field. Prove that if σ is an isomorphism of F(α1, . ....

Let F be a field. Prove that if σ is an isomorphism of F(α1, . . . , αn) with itself such that σ(αi) = αi for i = 1, . . . , n, and σ(c) = c for all c ∈ F, then σ is the identity. Conclude that if E is a field extension of F and if σ, τ : F(α1, . . . , αn) → E fix F pointwise and σ(αi) = τ (αi) for all i, then σ = τ .

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let f : Z → Z be a ring isomorphism. Prove that f must be the...
Let f : Z → Z be a ring isomorphism. Prove that f must be the identity map. Must this still hold true if we only assume f : Z → Z is a group isomorphism? Prove your answer.
(a) Let a,b,c be elements of a field F. Prove that if a not= 0, then...
(a) Let a,b,c be elements of a field F. Prove that if a not= 0, then the equation ax+b=c has a unique solution. (b) If R is a commutative ring and x1,x2,...,xn are independent variables over R, prove that R[x σ(1),x σ (2),...,x σ (n)] is isomorphic to R[x1,x2,...,xn] for any permutation σ of the set {1,2,...,n}
a. Prove for all σ, τ ∈ Sn that στσ−1 τ −1 ∈ An. b. Let...
a. Prove for all σ, τ ∈ Sn that στσ−1 τ −1 ∈ An. b. Let p and q be distinct odd primes. Prove that Zxpq is not a cyclic group.
Let E/F be a field extension, and let α be an element of E that is...
Let E/F be a field extension, and let α be an element of E that is algebraic over F. Let p(x) = irr(α, F) and n = deg p(x). (a) For f(x) ∈ F[x], let r(x) (∈ F[x]) be the remainder of f(x) when divided by p(x). Prove that f(x) +p(x)= r(x)+p(x)in F[x]/p(x). (b) Prove that if |F| < ∞, then | F[x]/p(x)| = |F|n. (For a set A, we denote by |A| the number of elements in A.)
Let E/F be a finite Galois extension such that Gal(E/F) is abelian. Prove that for every...
Let E/F be a finite Galois extension such that Gal(E/F) is abelian. Prove that for every intermediate field K, the extension K/F is Galois.
Let E/F be an algebraic extension. Let K and L be intermediate fields (i.e. F ⊆...
Let E/F be an algebraic extension. Let K and L be intermediate fields (i.e. F ⊆ K ⊆ E and F ⊆ L ⊆ E). (i) Prove that if the extension K/F is separable then the extension KL/L is separable. (ii) Prove that if the extension K/F is normal then the extension KL/L is normal. Note: To make things easier for you, you can assume that E/F is finite (hence all extensions are finite),
Let F be a field and let f(x) be an element of F[x] be an an...
Let F be a field and let f(x) be an element of F[x] be an an irreducible polynomial. Suppose K is an extension field containing F and that alpha is a root of f(x). Define a function f: F[x] ---> K by f:g(x) = g(alpha). Prove the ker(f) =<f(x)>.
4) Let F be a finite field. Prove that there exists an integer n ≥ 1,...
4) Let F be a finite field. Prove that there exists an integer n ≥ 1, such that n.1F = 0F . Show further that the smallest positive integer with this property is a prime number.
Let F be a field and f(x), g(x) ? F[x] both be of degree ? n....
Let F be a field and f(x), g(x) ? F[x] both be of degree ? n. Suppose that there are distinct elements c0, c1, c2, · · · , cn ? F such that f(ci) = g(ci) for each i. Prove that f(x) = g(x) in F[x].
1.- Prove the intermediate value theorem: let (X, τ) be a connected topological space, f: X...
1.- Prove the intermediate value theorem: let (X, τ) be a connected topological space, f: X - → Y a continuous transformation and x1, x2 ∈ X with a1 = f (x1), a2 = f (x2) ( a1 different a2). Then for all c∈ (a1, a2) there is x∈ such that f (x) = c. 2.- Let f: X - → Y be a continuous and suprajective transformation. Show that if X is connected, then Y too.