Question

Let A be open and nonempty and f : A → R. Prove that f is...

Let A be open and nonempty and f : A → R. Prove that f is continuous at a if and only if f is both upper and lower semicontinuous at a.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose ? ⊂ R^? , ? ⊂ R^? are nonempty and open and ? : ?...
Suppose ? ⊂ R^? , ? ⊂ R^? are nonempty and open and ? : ? → R^? and ? : ? → R^? . Let ℎ : ? × ? → R ?+? be defined by ℎ(u, v) = (?(u), ?(v)). If ? is continuous at x ∈ ? and ? is continuous at y ∈ ? , then show that ℎ is continuous at (x, y) ∈ ? × ? . Hint: Note that for any vectors z...
Let A and B be nonempty sets. Prove that if f is an injection, then f(A...
Let A and B be nonempty sets. Prove that if f is an injection, then f(A − B) = f(A) − f(B)
Let A and B be nonempty sets. Prove that if f is an injection, then f(A...
Let A and B be nonempty sets. Prove that if f is an injection, then f(A − B) = f(A) − f(B)
let F : R to R be a continuous function a) prove that the set {x...
let F : R to R be a continuous function a) prove that the set {x in R:, f(x)>4} is open b) prove the set {f(x), 1<x<=5} is connected c) give an example of a function F that {x in r, f(x)>4} is disconnected
let A be a nonempty subset of R that is bounded below. Prove that inf A...
let A be a nonempty subset of R that is bounded below. Prove that inf A = -sup{-a: a in A}
Prove: A nonempty subset C⊆R is closed if and only if there is a continuous function...
Prove: A nonempty subset C⊆R is closed if and only if there is a continuous function g:R→R such that C=g-1(0).
Let A be a nonempty set. Prove that the set S(A) = {f : A →...
Let A be a nonempty set. Prove that the set S(A) = {f : A → A | f is one-to-one and onto } is a group under the operation of function composition.
Prove or provide a counterexample Let f:R→R be a function. If f is T_U−T_C continuous, then...
Prove or provide a counterexample Let f:R→R be a function. If f is T_U−T_C continuous, then f is T_C−T_U continuous. T_U is the usual topology and T_C is the open half-line topology
Let A⊆R be a nonempty set, which is bounded above. Let B={a-5:a∈ A}. Prove that sup(B)=sup(A)-5
Let A⊆R be a nonempty set, which is bounded above. Let B={a-5:a∈ A}. Prove that sup(B)=sup(A)-5
Suppose A ⊆ R is nonempty and bounded above and β ∈ R. Let A +...
Suppose A ⊆ R is nonempty and bounded above and β ∈ R. Let A + β = {a + β : a ∈ A} Prove that A + β has a supremum and sup(A + β) = sup(A) + β.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT