Question

Partial differential equations Solve using the method of characteristics ut +1/2 ux + 3/2 vx =...

Partial differential equations

Solve using the method of characteristics

ut +1/2 ux + 3/2 vx = 0 , u(x,0) =cos(2x)

vt + 3/2 ux + 1/2 vx = 0 , v(x,0) = sin(2x)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Solve the below boundary value equation 1. Ut=2uxx o<x<pi 0<t 2. u(0,t) = ux(pi,t) 0<t 3....
Solve the below boundary value equation 1. Ut=2uxx o<x<pi 0<t 2. u(0,t) = ux(pi,t) 0<t 3. u(x,0) = 1-2x 0<x<pi
PDE Solve using the method of characteristics Plot the intial conditions and then solve the parial...
PDE Solve using the method of characteristics Plot the intial conditions and then solve the parial differential equation utt = c² uxx, -∞ < x < ∞, t > 0 u(x,0) = { 0 if x < -1 , 1-x² if -1≤ x ≤1, 0 if x > 0 ut(x,0) = 0
(a) Separate the following partial differential equation into two ordinary differential equations: e 5t t 6...
(a) Separate the following partial differential equation into two ordinary differential equations: e 5t t 6 Uxx + 7t 2 Uxt − 6t 2 Ut = 0. (b) Given the boundary values Ux (0,t) = 0 and U(2π,t) = 0, for all t, write an eigenvalue problem in terms of X(x) that the equation in (a) must satisfy. That is, state (ONLY) the resulting eigenvalue problem that you would need to solve next. You do not need to actually solve...
Using separation of variables to solve the heat equation, ut = kuxx on the interval 0...
Using separation of variables to solve the heat equation, ut = kuxx on the interval 0 < x < 1 with boundary conditions ux (0, t ) = 0 and ux (1, t ) = 0, yields the general solution, ∞ u(x,t) = A0 + ?Ane−kλnt cos?nπx? (with λn = n2π2) n=1DeterminethecoefficientsAn(n=0,1,2,...)whenu(x,0)=f(x)= 0, 1/2≤x<1 .
Solve the following Differential equations a) x sin y dx + (x^2 + 1) cos y...
Solve the following Differential equations a) x sin y dx + (x^2 + 1) cos y dy = 0
(a) Separate the following partial differential equation into two ordinary differential equations: Utt + 4Utx −...
(a) Separate the following partial differential equation into two ordinary differential equations: Utt + 4Utx − 2U = 0. (b) Given the boundary values U(0,t) = 0 and Ux (L,t) = 0, L > 0, for all t, write an eigenvalue problem in terms of X(x) that the equation in (a) must satisfy.
On this problem, be sure to discuss the dynamic behavior and characteristics of the graphs. 3...
On this problem, be sure to discuss the dynamic behavior and characteristics of the graphs. 3 (a) Solve AND find the characteristics curve for the eqtn :  ut + (x-t)ux = 0. (b) Find the solution to the initial value problem u(0, x) = e^{-x^2}, (c) and discuss its dynamic behavior.
Suppose u(t,x) and v(t,x ) is C^2 functions defined on R^2 that satisfy the first-order system...
Suppose u(t,x) and v(t,x ) is C^2 functions defined on R^2 that satisfy the first-order system of PDE Ut=Vx, Vt=Ux, A.) Show that both U and V are classical solutions to the wave equations  Utt= Uxx. Which result from multivariable calculus do you need to justify the conclusion. B)Given a classical sol. u(t,x) to the wave equation, can you construct a function v(t,x) such that u(t,x), v(t,x) form of sol. to the first order system.
Solve the following differential equations 1. cos(t)y' - sin(t)y = t^2 2. y' - 2ty =...
Solve the following differential equations 1. cos(t)y' - sin(t)y = t^2 2. y' - 2ty = t Solve the ODE 3. ty' - y = t^3 e^(3t), for t > 0 Compare the number of solutions of the following three initial value problems for the previous ODE 4. (i) y(1) = 1 (ii) y(0) = 1 (iii) y(0) = 0 Solve the IVP, and find the interval of validity of the solution 5. y' + (cot x)y = 5e^(cos x),...
Solve the following partial differential equation using separation of variables method [Marks 10] ?2?/??2− ???/?? +??/??...
Solve the following partial differential equation using separation of variables method [Marks 10] ?2?/??2− ???/?? +??/?? = ?.