Question

Suppose we are given a system Ax = b, with A an n × m matrix....

Suppose we are given a system Ax = b, with A an n × m matrix. What can you say about the solution set of the system in the following cases? Provide a brief explanation.

(i) rank(A) < n

(ii) rank(A) = n

(iii) rank(A) < m

(iv) rank(A) = m

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
4. Suppose that we have a linear system given in matrix form as Ax = b,...
4. Suppose that we have a linear system given in matrix form as Ax = b, where A is an m×n matrix, b is an m×1 column vector, and x is an n×1 column vector. Suppose also that the n × 1 vector u is a solution to this linear system. Answer parts a. and b. below. a. Suppose that the n × 1 vector h is a solution to the homogeneous linear system Ax=0. Showthenthatthevectory=u+hisasolutiontoAx=b. b. Now, suppose that...
In the system AX=b, where A is m x n matrix and rank of A is...
In the system AX=b, where A is m x n matrix and rank of A is m, you are given n vectors and among them p vectors are linearly dependent (p > m). Please write down the procedure to reduce the number of dependent vector by 1.
a)Assume that you are given a matrix A = [aij ] ∈ R n×n with (1...
a)Assume that you are given a matrix A = [aij ] ∈ R n×n with (1 ≤ i, j ≤ n) and having the following interesting property: ai1 + ai2 + ..... + ain = 0 for each i = 1, 2, ...., n Based on this information, prove that rank(A) < n. b) Let A ∈ R m×n be a matrix of rank r. Suppose there are right hand sides b for which Ax = b has no solution,...
A linear system of equations Ax=b is known, where A is a matrix of m by...
A linear system of equations Ax=b is known, where A is a matrix of m by n size, and the column vectors of A are linearly independent of each other. Please answer the following questions based on this assumption, please explain it, thank you~. (1) To give an example, Ax=b is the only solution. (2) According to the previous question, what kind of inference can be made to the size of A at this time? (What is the size of...
Let A be an nxn matrix. Show that if Rank(A) = n, then Ax = b...
Let A be an nxn matrix. Show that if Rank(A) = n, then Ax = b has a unique solution for any nx1 matrix b.
True or False (5). Suppose the matrix A and B are both invertible, then (A +...
True or False (5). Suppose the matrix A and B are both invertible, then (A + B)−1 = A−1 + B−1 . (6). The linear system ATAx = ATb is always consistent for any A ∈ Rm×n, b ∈Rm . (7). For any matrix A ∈Rm×n , it satisfies dim(Nul(A)) = n−rank(A). (8). The two linear systems Ax = 0 and ATAx = 0 have the same solution set. (9). Suppose Q ∈Rn×n is an orthogonal matrix, then the row...
Prove the following: Given k x m matrix A, m x n matrix B. Then rank(A)=m...
Prove the following: Given k x m matrix A, m x n matrix B. Then rank(A)=m --> rank(AB)=rank(B)
Suppose Ax = b 0 is a linear system and A is a square, singular matrix....
Suppose Ax = b 0 is a linear system and A is a square, singular matrix. How many solutions is it possible for the system to have?
Can i make conclusions about m x n matrix with rank r with (n-r) values and...
Can i make conclusions about m x n matrix with rank r with (n-r) values and it's solution number? Is there any other relations between rank of a matrix and avalaible solutions?
Let A be an m×n matrix, x a vector in Rn, and b a vector in...
Let A be an m×n matrix, x a vector in Rn, and b a vector in Rm. Show that if x1 in Rn is a solution to Ax=b and x2 is a solution to Ax=⃗0, then x1 +x2 is a solution to Ax=b.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT