Question

a)Prove that the function u(x, y) = x -y÷x+y is harmonic and obtain a conjugate function...

a)Prove that the function
u(x, y) = x -y÷x+y
is harmonic and obtain a conjugate function v(x, y) such that
f(z) = u + iv is analytic.

b)Convert the integral
from 0 to 5 of (25-t²)^3/2 dt
into a Beta Function and evaluate the resulting function.

c)Solve the first order PDE
sin(x) sin(y)
∂u
∂x + cos(x) cos(y)
∂u
∂y = 0
such that u(x, y) = cos(2x), on x + y =
π
2

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
For the given function u(x, y) = cos(ax) sinh(3y),(a > 0); (a) Find the value of...
For the given function u(x, y) = cos(ax) sinh(3y),(a > 0); (a) Find the value of a such that u(x, y) is harmonic. (b) Find the harmonic conjugate of u(x, y) as v(x, y). (c) Find the analytic function f(z) = u(x, y) + iv(x, y) in terms of z. (d) Find f ′′( π 4 − i) =?
Are the following function harmonic? If your answer is yes, find a corresponding analytic function f...
Are the following function harmonic? If your answer is yes, find a corresponding analytic function f (z) =u(x, y) + iv(x, y). v = ( 2x + 1)y
Problem 7. Consider the line integral Z C y sin x dx − cos x dy....
Problem 7. Consider the line integral Z C y sin x dx − cos x dy. a. Evaluate the line integral, assuming C is the line segment from (0, 1) to (π, −1). b. Show that the vector field F = <y sin x, − cos x> is conservative, and find a potential function V (x, y). c. Evaluate the line integral where C is any path from (π, −1) to (0, 1).
Evaluate the following. f(x, y) = x + y S: r(u, v) = 5 cos(u) i...
Evaluate the following. f(x, y) = x + y S: r(u, v) = 5 cos(u) i + 5 sin(u) j + v k, 0 ≤ u ≤ π/2, 0 ≤ v ≤ 3
Solve the following initial/boundary value problem: ∂u(t,x)/∂t = ∂^2u(t,x)/∂x^2 for t>0, 0<x<π, u(t,0)=u(t,π)=0 for t>0, u(0,x)=sin^2x...
Solve the following initial/boundary value problem: ∂u(t,x)/∂t = ∂^2u(t,x)/∂x^2 for t>0, 0<x<π, u(t,0)=u(t,π)=0 for t>0, u(0,x)=sin^2x for 0≤x≤ π. if you like, you can use/cite the solution of Fourier sine series of sin^2(x) on [0,pi] = 1/4-(1/4)cos(2x) please show all steps and work clearly so I can follow your logic and learn to solve similar ones myself.
1.) Let f ( x , y , z ) = x ^3 + y +...
1.) Let f ( x , y , z ) = x ^3 + y + z + sin ⁡ ( x + z ) + e^( x − y). Determine the line integral of f ( x , y , z ) with respect to arc length over the line segment from (1, 0, 1) to (2, -1, 0) 2.) Letf ( x , y , z ) = x ^3 * y ^2 + y ^3 * z^...
Evaluate the scalar surface integral ∬ S1 (x) dS, where S1 is the portion of the...
Evaluate the scalar surface integral ∬ S1 (x) dS, where S1 is the portion of the helicoid which is the image of the parametrization r( u , v ) =< u cos( v ) , u sin( v ) , v > over 0 ≤ u ≤ 2 and 0 ≤ v ≤ π/2.
Find the general solution of uxx − 3uxy + 2uyy = 0 using the the method...
Find the general solution of uxx − 3uxy + 2uyy = 0 using the the method of characteristics: let v = y + 2x and w = y + x; define U(v, w) to be U(v, w) = U(y + 2x, y + x) = u(x, y); derive and solve a PDE for U(v, w); convert back to u(x, y).
Please show all steps, thank you: Problem C: Does there exist an analytic function f(z) in...
Please show all steps, thank you: Problem C: Does there exist an analytic function f(z) in some domain D with the real part u(x,y)=x^2+y^2? Problem D: Is the function f(z)=(x-iy)^2 analytic in any domain in C? Are the real part u(x,y) and the imaginary pary v(x,y) harmonic in C? Are u and v harmonic conjugates of each other in any domain?
Set up the triple integral, including limits, of the function over the region. f(x, y, z)...
Set up the triple integral, including limits, of the function over the region. f(x, y, z) = sin z, x ≥ 0, y ≥ 0, and below the plane 2x + 2y + z = 2