Question

1) If u and v are orthogonal unit vectors, under what condition au+bv is orthogonal to...

1) If u and v are orthogonal unit vectors, under what condition au+bv is orthogonal to cu+dv (where a, b, c, d are scalars)? What are the lengths of those vectors (express them using a, b, c, d)?

2) Given two vectors u and v that are not orthogonal, prove that w=‖u‖2v−uuT v is orthogonal to u, where ‖x‖ is the L^2 norm of x.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let u = (1,−3,3,9) and v = (2,1,0,−2). Find scalars a and b so that au...
Let u = (1,−3,3,9) and v = (2,1,0,−2). Find scalars a and b so that au + bv = (−3,−5,3,10)
Let V be a three-dimensional vector space with ordered basis B = {u, v, w}. Suppose...
Let V be a three-dimensional vector space with ordered basis B = {u, v, w}. Suppose that T is a linear transformation from V to itself and T(u) = u + v, T(v) = u, T(w) = v. 1. Find the matrix of T relative to the ordered basis B. 2. A typical element of V looks like au + bv + cw, where a, b and c are scalars. Find T(au + bv + cw). Now that you know...
It is not true that the equality u x (v x w) = (u x v)...
It is not true that the equality u x (v x w) = (u x v) x w for all vectors. 1. Find explicit vector for u, v and w where this equality does not hold. 2. U, V and W are all nonzero vectors that satisfy the equality. Show that at least one of the conditions below holds: a) v is orthogonal to u and w. b) w is a scalar multiple of u. You can possibly use a...
Let the linear transformation T: V--->W be such that T (u) = u2 If a, b...
Let the linear transformation T: V--->W be such that T (u) = u2 If a, b are Real. Find T (au + bv) , if u = (x, y) v = (z, w) and uv = (xz-yw, xw + yz) Let the linear transformation T: V---> W be such that T (u) = T (x, y) = (xy, 0) where u = (x, y), with 2, -3. Then, if u = ( 1.0) and v = (0.1). Find the value...
1. Compute the angle between the vectors u = [2, -1, 1] and and v =...
1. Compute the angle between the vectors u = [2, -1, 1] and and v = [1, -2 , -1] 2. Given that : 1. u=[1, -3] and v=[6, 2], are u and v orthogonal? 3. if u=[1, -3] and v=[k2, k] are orthogonal vectors. What is the value(s) of k? 4. Find the distance between u=[root 3, 2, -2] and v=[0, 3, -3] 5. Normalize the vector u=[root 2, -1, -3]. 6. Given that: v1 = [1, - C/7]...
1. V is a subspace of inner-product space R3, generated by vector u =[2 2 1]T...
1. V is a subspace of inner-product space R3, generated by vector u =[2 2 1]T and v =[ 3 2 2]T. (a) Find its orthogonal complement space V┴ ; (b) Find the dimension of space W = V+ V┴; (c) Find the angle θ between u and v and also the angle β between u and normalized x with respect to its 2-norm. (d) Considering v’ = av, a is a scaler, show the angle θ’ between u and...
Let u, v, and w be vectors in Rn. Determine which of the following statements are...
Let u, v, and w be vectors in Rn. Determine which of the following statements are always true. (i) If ||u|| = 4, ||v|| = 5, and ?||u + v|| = 8, then u?·?v = 4. (ii) If ||u|| = 2 and ||v|| = 3, ?then |u?·?v| ? 5. (iii) The expression (v?·?w)u is both meaningful and defined. (A) (ii) and (iii) only (B) (ii) only (C) none of them (D) all of them (E) (i) only (F) (i) and...
please answer all of them a. Suppose u and v are non-zero, parallel vectors. Which of...
please answer all of them a. Suppose u and v are non-zero, parallel vectors. Which of the following could not possibly be true? a) u • v = |u | |v| b) u + v = 0 c) u × v = |u|2 d) |u| + |v| = 2|u| b. Given points A(3, -4, 2) and B(-12, 16, 12), point P, lying between A and B such that AP= 3/5AB would have coordinates a) P(-27/5, 36/5, 42/5) b) P(-6, 8,...
Do the vectors v1 =   1 2 3   , v2 = ...
Do the vectors v1 =   1 2 3   , v2 =   √ 3 √ 3 √ 3   , v3   √ 3 √ 5 √ 7   , v4 =   1 0 0   form a basis for R 3 ? Why or why not? (b) Let V ⊂ R 4 be the subspace spanned by the vectors a1 and a2, where a1 =   ...
(a) Do the vectors v1 = 1 2 3 , v2 = √ 3 √ 3...
(a) Do the vectors v1 = 1 2 3 , v2 = √ 3 √ 3 √ 3 , v3=√ 3 √ 5 √ 7, v4 = 1 0 0 form a basis for R 3 ? Why or why not? (b) Let V ⊂ R 4 be the subspace spanned by the vectors a1 and a2, where a1 = (1 0 −1 0) , a2 = 0 1 0 −1. Find a basis for the orthogonal complement V ⊥...