Question

So if we can find a number r satisfying r2=b2−4ac, then we can solve for z...

So if we can find a number r satisfying r2=b2−4ac, then we can solve for z in terms of a,b,c and r as

z=−b2a±r2a.

Hopefully you can recognize the usual quadratic formula here. If b2−4ac is a positive real number, we usually just replace r with b2−4ac−−−−−−−√.

However if b2−4ac is a negative real number, or in fact a general complex number---which will happen if a,b and c are complex numbers---then there is no canonical b2−4ac−−−−−−−√, but we could still find a value r (at least approximately) satisfying r2=b2−4ac, and then the formula z=−b2a±r2a gives us the solutions (as a set): {−b+r2a,−b−r2a}.

Use this analysis to solve the complex quadratic equation (1+i)z2+2z−(3+i)=0. The solution set is

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
. In this question, i ? C is the imaginary unit, that is, the complex number...
. In this question, i ? C is the imaginary unit, that is, the complex number satisfying i^2 = ?1. (a) Verify that 2 ? 3i is a root of the polynomial f(z) = z^4 ? 7z^3 + 27z^2 ? 47z + 26 Find all the other roots of this polynomial. (b) State Euler’s formula for e^i? where ? is a real number. (c) Use Euler’s formula to prove the identity cos(2?) = cos^2 ? ? sin^2 ? (d) Find...
1. Suppose we have the following relation defined on Z. We say that a ∼ b...
1. Suppose we have the following relation defined on Z. We say that a ∼ b iff 2 divides a + b. (a) Prove that the relation ∼ defines an equivalence relation on Z. (b) Describe the equivalence classes under ∼ . 2. Suppose we have the following relation defined on Z. We say that a ' b iff 3 divides a + b. It is simple to show that that the relation ' is symmetric, so we will leave...
Relations and Functions Usual symbols for the above are; Relations: R1, R2, S, T, etc Functions:...
Relations and Functions Usual symbols for the above are; Relations: R1, R2, S, T, etc Functions: f, g, h, etc. But remember a function is a special kind of relation so it might turn out that a Relation, R, is a function, too. Relations To understand the symbolism better, let’s say the domain of a relation, R, is A = { a, b , c} and the Codomain is B = { 1,2,3,4}. Here is the relation: a R 1,    ...
Assume that we are working with an aluminum alloy (k = 180 W/moC) triangular fin with...
Assume that we are working with an aluminum alloy (k = 180 W/moC) triangular fin with a length, L = 5 cm, base thickness, b = 1 cm, a very large width, w = 1 m. The base of the fin is maintained at a temperature of T0 = 200oC (at the left boundary node). The fin is losing heat to the surrounding air/medium at T? = 25oC with a heat transfer coefficient of h = 15 W/m2oC. Using the...
Please provide a brief overview on: chapter 21 1. Can I obtain the net electric field...
Please provide a brief overview on: chapter 21 1. Can I obtain the net electric field due to two or more point charges? 2. Can I obtain the net Coulomb force on a point charge due to two or more point charges? 3. Can I draw physical quantities (for example, velocity, forces or electric fields) involved in a given problem in a diagram? 4. Do I have a good "qualitative" understanding of the motion of a charged particle in a...