Question

Let (xn) be Cauchy in (M, d) and a ∈ M. Show that the sequence d(xn,...

Let (xn) be Cauchy in (M, d) and a ∈ M. Show that the sequence
d(xn, a) converges in R. (Note: It is not given that xn converges to a.
Hint: Use Reverse triangle inequality.)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Exercise 2.4.5: Suppose that a Cauchy sequence {xn} is such that for every M ∈ N,...
Exercise 2.4.5: Suppose that a Cauchy sequence {xn} is such that for every M ∈ N, there exists a k ≥ M and an n ≥ M such that xk < 0 and xn > 0. Using simply the definition of a Cauchy sequence and of a convergent sequence, show that the sequence converges to 0.
Let X = (xn) be a sequence in R^p which is convergent to x. Show that...
Let X = (xn) be a sequence in R^p which is convergent to x. Show that lim(||xn||) = ||x||. hint: use triange inequality
Use the definition of a Cauchy sequence to prove that the sequence defined by xn =...
Use the definition of a Cauchy sequence to prove that the sequence defined by xn = (3/2)^n is a Cauchy sequence in R.
Let <Xn> be a cauchy sequence of real numbers. Prove that <Xn> has a limit.
Let <Xn> be a cauchy sequence of real numbers. Prove that <Xn> has a limit.
If Xn is a cauchy sequence and Yn is also a cauchy sequence, then prove that...
If Xn is a cauchy sequence and Yn is also a cauchy sequence, then prove that Xn+Yn is also a cauchy sequence
Real Analysis: Suppose f: [0,1] --> R is continuous, and {xn} is a Cauchy sequence in...
Real Analysis: Suppose f: [0,1] --> R is continuous, and {xn} is a Cauchy sequence in [0,1]. Prove or disprove that {f(xn)} is a Cauchy Sequence.
Let 0 < θ < 1 and let (xn) be a sequence where |xn+1 − xn|...
Let 0 < θ < 1 and let (xn) be a sequence where |xn+1 − xn| ≤ θn  for n = 1, 2, . . .. a) Show that for any 1 ≤ n < m one has |xm − xn| ≤ (θn/ 1-θ )*(1 − θ m−n ). Conclude that (xn) is Cauchy b)If lim xn = x* , prove the following error in approximation (the "error in approximation" is the same as error estimation in Taylor Theorem) in t:...
if {Xn} and {Yn} are cauchy, show that {Xn +Yn} is cauchy. b.) Also show that...
if {Xn} and {Yn} are cauchy, show that {Xn +Yn} is cauchy. b.) Also show that {XnYn} is cauchy
Let f: (0,1) -> R be uniformly continuous and let Xn be in (0,1) be such...
Let f: (0,1) -> R be uniformly continuous and let Xn be in (0,1) be such that Xn-> 1 as n -> infinity. Prove that the sequence f(Xn) converges
Let xn be a sequence such that for every m ∈ N, m ≥ 2 the...
Let xn be a sequence such that for every m ∈ N, m ≥ 2 the sequence limn→∞ xmn = L. Prove or provide a counterexample: limn→∞ xn = L.