Question

It is clear that the cardinality of the Natural numbers is no more than the cardinality...

It is clear that the cardinality of the Natural numbers is no more than the cardinality of the Rational numbers. Show that Rational numbers have cardinality no greater than the natural numbers (and therefore they have the same cardinality).

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
6. (a) Prove by contrapositive: If the product of two natural numbers is greater than 100,...
6. (a) Prove by contrapositive: If the product of two natural numbers is greater than 100, then at least one of the numbers is greater than 10. (b) Prove or disprove: If the product of two rational numbers is greater than 100, then at least one of the numbers is greater than 10.
15.) a) Show that the real numbers between 0 and 1 have the same cardinality as...
15.) a) Show that the real numbers between 0 and 1 have the same cardinality as the real numbers between 0 and pi/2. (Hint: Find a simple bijection from one set to the other.) b) Show that the real numbers between 0 and pi/2 have the same cardinality as all nonnegative real numbers. (Hint: What is a function whose graph goes from 0 to positive infinity as x goes from 0 to pi/2?) c) Use parts a and b to...
1.The one-to-one correspondence between the positive rational numbers and the natural numbers implies what conclusion about...
1.The one-to-one correspondence between the positive rational numbers and the natural numbers implies what conclusion about the cardinality of the two sets? 2. Is it possible to form a one-to-one correspondence between the natural numbers and the real numbers? Is either set a proper subset of the other? What is the significance of the answer to these questions?
If we let N stand for the set of all natural numbers, then we write 6N...
If we let N stand for the set of all natural numbers, then we write 6N for the set of natural numbers all multiplied by 6 (so 6N = {6, 12, 18, 24, . . . }). Show that the sets N and 6N have the same cardinality by describing an explicit one-to-one correspondence between the two sets.
Prove that the set of real numbers has the same cardinality as: (a) The set of...
Prove that the set of real numbers has the same cardinality as: (a) The set of positive real numbers. (b) The set of nonnegative real numbers.
Prove that the set of real numbers has the same cardinality as: (a) The set of...
Prove that the set of real numbers has the same cardinality as: (a) The set of positive real numbers. (b) The set of non-negative real numbers.
for the function g(x) = 1/x for all nonzero real numbers X. Is the cardinality the...
for the function g(x) = 1/x for all nonzero real numbers X. Is the cardinality the same for all even numbers as it is for all integers
Arrange the following cardinal numbers in order (some will have the same cardinality, and in those...
Arrange the following cardinal numbers in order (some will have the same cardinality, and in those cases you put an equal sign).. |{0,5}|, |[0,5]|, |{0,3,5}|, |ℝ-{3}|, |P ({0,5})|, ||P ((0,5))|, |(0,5)-{3}|, |ℝ-ℕ|
For n in natural number, let A_n be the subset of all those real numbers that...
For n in natural number, let A_n be the subset of all those real numbers that are roots of some polynomial of degree n with rational coefficients. Prove: for every n in natural number, A_n is countable.
Let A be the set of all natural numbers less than 100. How many subsets with...
Let A be the set of all natural numbers less than 100. How many subsets with three elements does set A have such that the sum of the elements in the subset must be divisible by 3?