Question

1. ∀n ∈ Z, prove that if ∃a, b ∈ Z such that a 2 +...

1. ∀n ∈ Z, prove that if ∃a, b ∈ Z such that a 2 + b 2 = n, then n 6≡ 3 (mod 4).

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Prove: Proposition 11.13. Congruence modulo n is an equivalence relation on Z : (1) For every...
Prove: Proposition 11.13. Congruence modulo n is an equivalence relation on Z : (1) For every a ∈ Z, a = a mod n. (2) If a = b mod n then b = a mod n. (3) If a = b mod n and b = c mod n, then a = c mod n
(§2.1) Let a,b,p,n ∈Z with n > 1. (a) Prove or disprove: If ab ≡ 0...
(§2.1) Let a,b,p,n ∈Z with n > 1. (a) Prove or disprove: If ab ≡ 0 (mod n), then a ≡ 0 (mod n) or b ≡ 0 (mod n). (b) Prove or disprove: Suppose p is a positive prime. If ab ≡ 0 (mod p), then a ≡ 0 (mod p) or b ≡ 0 (mod p).
Prove: Let n ∈ N, a ∈ Z, and gcd(a,n) = 1. For i,j ∈ N,...
Prove: Let n ∈ N, a ∈ Z, and gcd(a,n) = 1. For i,j ∈ N, aj ≡ ai (mod n) if and only if j ≡ i (mod ordn(a)). Where ordn(a) represents the order of a modulo n. Be sure to prove both the forward and backward direction.
Let Z be the integers. (a) Let C1 = {(a, a) | a ∈ Z}. Prove...
Let Z be the integers. (a) Let C1 = {(a, a) | a ∈ Z}. Prove that C1 is a subgroup of Z × Z. (b) Let n ≥ 2 be an integer, and let Cn = {(a, b) | a ≡ b( mod n)}. Prove that Cn is a subgroup of Z × Z. (c) Prove that every proper subgroup of Z × Z that contains C1 has the form Cn for some positive integer n.
(9 marks) Define the relation τ on Z by a τ b if and only if...
Define the relation τ on Z by a τ b if and only if there exists x ∈ {1, 4, 16} such that ax ≡ b (mod 63). (a) Prove that τ is an equivalence relation. (b) Prove that there exists an integer n with 1 ≤ n ≤ 62 such that the equivalence class of n is {m ∈ Z | m ≡ n (mod 63)}.
Prove: If n≡3 (mod 8) and n=a^2+b^2+c^2+d^2, then exactly one of a, b, c, d is...
Prove: If n≡3 (mod 8) and n=a^2+b^2+c^2+d^2, then exactly one of a, b, c, d is even. (Hint: What can each square be modulo 8?)
1. Prove that 21 divides 3n7 + 7n3 + 11n for all integers n. 2. Prove...
1. Prove that 21 divides 3n7 + 7n3 + 11n for all integers n. 2. Prove that n91 ≡ n7 (mod 91) for all integers n. Is n91 ≡ n (mod 91) for all integers n ?
Prove or disprove the following statements. a) ∀a, b ∈ N, if ∃x, y ∈ Z...
Prove or disprove the following statements. a) ∀a, b ∈ N, if ∃x, y ∈ Z and ∃k ∈ N such that ax + by = k, then gcd(a, b) = k b) ∀a, b ∈ Z, if 3 | (a 2 + b 2 ), then 3 | a and 3 | b.
Define the relation τ on Z by aτ b if and only if there exists x...
Define the relation τ on Z by aτ b if and only if there exists x ∈ {1,4,16} such that ax ≡ b (mod 63). (a) Prove that τ is an equivalence relation. (b) Prove that there exists an integer n with 1 ≤ n ≤ 62 such that the equivalence class of n is{m ∈ Z | m ≡ n (mod 63)}.
Prove that for all n ∈ Z, there exists a k ∈ Z such that n^3...
Prove that for all n ∈ Z, there exists a k ∈ Z such that n^3 = 9k, n^3 = 9k + 1, or n^3 = 9k − 1.