Question

Prove this statement or show why it's false (provide a counter example) ∀x(R(x) ∨ S(x)) →...

Prove this statement or show why it's false (provide a counter example)

∀x(R(x) ∨ S(x)) → (∃xR(x) ∨ ∃yS(y))

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Prove the statement true or use a counter-example to explain why it is false. Let a,...
Prove the statement true or use a counter-example to explain why it is false. Let a, b, and c be natural numbers. If (a*c) does not divide (b*c), then a does not divide b.
Prove or give a counter-example: (a) if R ⊂ S and T ⊂ U then T\...
Prove or give a counter-example: (a) if R ⊂ S and T ⊂ U then T\ S ⊂ U \R. (b) if R∪S⊂T∪U, R∩S= Ø and T⊂ R, then S ⊂ U. (c) if R ∩ S⊂T ∩ S then R⊂T. (d) R\ (S\T)=(R\S) \ T
Prove or give a counter example: If f is continuous on R and differentiable on R...
Prove or give a counter example: If f is continuous on R and differentiable on R ∖ { 0 } with lim x → 0 f ′ ( x ) = L , then f is differentiable on R .
Prove that the set S = {(x, y, z) ∈ R 3 : x + y...
Prove that the set S = {(x, y, z) ∈ R 3 : x + y + z = b}. is a subspace of R 3 if and only if b = 0.
In each case below show that the statement is True or give an example showing that...
In each case below show that the statement is True or give an example showing that it is False. (i) If {X, Y } is independent in R n, then {X, Y, X + Y } is independent. (ii) If {X, Y, Z} is independent in R n, then {Y, Z} is independent. (iii) If {Y, Z} is dependent in R n, then {X, Y, Z} is dependent. (iv) If A is a 5 × 8 matrix with rank A...
Prove the following: Theorem. Let R ⊆ X × Y and S ⊆ Y × Z...
Prove the following: Theorem. Let R ⊆ X × Y and S ⊆ Y × Z be relations. Then 1. Range(S ◦ R) ⊆ Range(S), and 2. if Domain(S) ⊆ Range(R), then Range(S ◦ R) = Range(S)
Prove or disprove the following statements. Remember to disprove a statement you have to show that...
Prove or disprove the following statements. Remember to disprove a statement you have to show that the statement is false. Equivalently, you can prove that the negation of the statement is true. Clearly state it, if a statement is True or False. In your proof, you can use ”obvious facts” and simple theorems that we have proved previously in lecture. (a) For all real numbers x and y, “if x and y are irrational, then x+y is irrational”. (b) For...
Mark the following as true or false, as the case may be. If a statement is...
Mark the following as true or false, as the case may be. If a statement is true, then prove it. If a statement is false, then provide a counter-example. a) A set containing a single vector is linearly independent b) The set of vectors {v, kv} is linearly dependent for every scalar k c) every linearly dependent set contains the zero vector d) The functions f1 and f2 are linearly dependent is there is a real number x, so that...
Prove the following statement: If x ∈ R, then x2 + 1 > x.
Prove the following statement: If x ∈ R, then x2 + 1 > x.
1. Prove p∧q=q∧p 2. Prove[((∀x)P(x))∧((∀x)Q(x))]→[(∀x)(P(x)∧Q(x))]. Remember to be strict in your treatment of quantifiers .3. Prove...
1. Prove p∧q=q∧p 2. Prove[((∀x)P(x))∧((∀x)Q(x))]→[(∀x)(P(x)∧Q(x))]. Remember to be strict in your treatment of quantifiers .3. Prove R∪(S∩T) = (R∪S)∩(R∪T). 4.Consider the relation R={(x,y)∈R×R||x−y|≤1} on Z. Show that this relation is reflexive and symmetric but not transitive.