Question

A table of values is given for a function f(x, y) defined on R = [1,...

A table of values is given for a function f(x, y) defined on R = [1, 3] × [0, 4].

0 1 2 3 4
1.0 2 0 -3 -6 -5
1.5 3 1 -4 -5 -6
2.0 4 3 0 -5 -8
2.5 5 4 3 -1 -4
3.0 7 8 6 3 0

Estimate f(x, y) dA R using the Midpoint Rule with m = n = 2 and estimate the double integral with m = n = 4 by choosing the sample points to be the points farthest from the origin.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Evaluate the double integral for the function f(x, y) and the given region R. f(x, y)...
Evaluate the double integral for the function f(x, y) and the given region R. f(x, y) = 5y + 5x; R is the rectangle defined by 5 ≤ x ≤ 6 and 2 ≤ y ≤ 4
Evaluate the double integral for the function f(x, y) and the given region R. f(x, y)...
Evaluate the double integral for the function f(x, y) and the given region R. f(x, y) = 5y + 4x; R is the rectangle defined by 5 ≤ x ≤ 6 and 1 ≤ y ≤ 3
A contour map is shown for a function f on the square R = [0, 2]...
A contour map is shown for a function f on the square R = [0, 2] ⨯ [0, 2]. (a) Use the Midpoint Rule with m = n = 2 to estimate the value of f(x,y) dA. R (Round your answer to the nearest integer.) (b) Estimate the average value of f. (Round your answer to one decimal place.)
] Consider the function f : R 2 → R defined by f(x, y) = x...
] Consider the function f : R 2 → R defined by f(x, y) = x ln(x + 2y). (a) Find the gradient of f(x, y) at the point P(e/3, e/3). (b) Use the gradient to find the directional derivative of f at P(e/3, e/3) in the direction of the vector ~u = h−4, 3i. (c) Find a unit vector (based at P) pointing in the direction in which f increases most rapidly at P.
Let f: [0, 1] --> R be defined by f(x) := x. Show that f is...
Let f: [0, 1] --> R be defined by f(x) := x. Show that f is in Riemann integration interval [0, 1] and compute the integral from 0 to 1 of the function f using both the definition of the integral and Riemann (Darboux) sums.
2. Evaluate the double integral Z Z R e ^(x^ 2+y ^2) dA where R is...
2. Evaluate the double integral Z Z R e ^(x^ 2+y ^2) dA where R is the semicircular region bounded by x ≥ 0 and x^2 + y^2 ≤ 4. 3. Find the volume of the region that is bounded above by the sphere x^2 + y^2 + z^2 = 2 and below by the paraboloid z = x^2 + y^2 . 4. Evaluate the integral Z Z R (12x^ 2 )(y^3) dA, where R is the triangle with vertices...
A joint density function of the continuous random variables x and y is a function f(x,...
A joint density function of the continuous random variables x and y is a function f(x, y) satisfying the following properties. f(x, y) ≥ 0 for all (x, y) ∞ −∞ ∞ f(x, y) dA = 1 −∞ P[(x, y)  R] =    R f(x, y) dA Show that the function is a joint density function and find the required probability. f(x, y) = 1 8 ,   0 ≤ x ≤ 1, 1 ≤ y ≤ 9 0,   elsewhere P(0 ≤...
Consider the integral ∫∫R(x^2+sin(y))dA where R is the region bounded by the curves x=y^2, x=4, and...
Consider the integral ∫∫R(x^2+sin(y))dA where R is the region bounded by the curves x=y^2, x=4, and y=0. Setup up this integral.
Consider the function f : R → R defined by f(x) = ( 5 + sin...
Consider the function f : R → R defined by f(x) = ( 5 + sin x if x < 0, x + cos x + 4 if x ≥ 0. Show that the function f is differentiable for all x ∈ R. Compute the derivative f' . Show that f ' is continuous at x = 0. Show that f ' is not differentiable at x = 0. (In this question you may assume that all polynomial and trigonometric...
Prove that the function f : R \ {−1} → R defined by f(x) = (1−x)...
Prove that the function f : R \ {−1} → R defined by f(x) = (1−x) /(1+x) is uniformly continuous on (0, ∞) but not uniformly continuous on (−1, 1).