Question

A table of values is given for a function f(x, y) defined on R = [1,...

A table of values is given for a function f(x, y) defined on R = [1, 3] × [0, 4].

0 1 2 3 4
1.0 2 0 -3 -6 -5
1.5 3 1 -4 -5 -6
2.0 4 3 0 -5 -8
2.5 5 4 3 -1 -4
3.0 7 8 6 3 0

Estimate f(x, y) dA R using the Midpoint Rule with m = n = 2 and estimate the double integral with m = n = 4 by choosing the sample points to be the points farthest from the origin.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Evaluate the double integral for the function f(x, y) and the given region R. f(x, y)...
Evaluate the double integral for the function f(x, y) and the given region R. f(x, y) = 5y + 5x; R is the rectangle defined by 5 ≤ x ≤ 6 and 2 ≤ y ≤ 4
Evaluate the double integral for the function f(x, y) and the given region R. f(x, y)...
Evaluate the double integral for the function f(x, y) and the given region R. f(x, y) = 5y + 4x; R is the rectangle defined by 5 ≤ x ≤ 6 and 1 ≤ y ≤ 3
Consider the function f : R 2 → R defined by f(x, y) = 4 +...
Consider the function f : R 2 → R defined by f(x, y) = 4 + x 3 + y 3 − 3xy. (a)Compute the directional derivative of f at the point (a, b) = ( 1 2 , 1 2 ), in the direction u = ( √ 1 2 , − √ 1 2 ). At the point ( 1 2 , 1 2 ), is u the direction of steepest ascent, steepest descent, or neither? Justify your...
A contour map is shown for a function f on the square R = [0, 2]...
A contour map is shown for a function f on the square R = [0, 2] ⨯ [0, 2]. (a) Use the Midpoint Rule with m = n = 2 to estimate the value of f(x,y) dA. R (Round your answer to the nearest integer.) (b) Estimate the average value of f. (Round your answer to one decimal place.)
Consider the function f defined on R by f(x) = ?0 if x ≤ 0, f(x)...
Consider the function f defined on R by f(x) = ?0 if x ≤ 0, f(x) = e^(−1/x^2) if x > 0. Prove that f is indefinitely differentiable on R, and that f(n)(0) = 0 for all n ≥ 1. Conclude that f does not have a converging power series expansion En=0 to ∞[an*x^n] for x near the origin. [Note: This problem illustrates an enormous difference between the notions of real-differentiability and complex-differentiability.]
] Consider the function f : R 2 → R defined by f(x, y) = x...
] Consider the function f : R 2 → R defined by f(x, y) = x ln(x + 2y). (a) Find the gradient of f(x, y) at the point P(e/3, e/3). (b) Use the gradient to find the directional derivative of f at P(e/3, e/3) in the direction of the vector ~u = h−4, 3i. (c) Find a unit vector (based at P) pointing in the direction in which f increases most rapidly at P.
Let f: [0, 1] --> R be defined by f(x) := x. Show that f is...
Let f: [0, 1] --> R be defined by f(x) := x. Show that f is in Riemann integration interval [0, 1] and compute the integral from 0 to 1 of the function f using both the definition of the integral and Riemann (Darboux) sums.
s] Consider the function f : R 2 → R defined by f(x, y) = x...
s] Consider the function f : R 2 → R defined by f(x, y) = x ln(x + 2y). (a) Find the gradient of f(x, y) at the point P(e/3, e/3). (b) Use the gradient to find the directional derivative of f at P(e/3, e/3) in the direction of the vector ~u = h−4, 3i. (c) Find a unit vector (based at P) pointing in the direction in which f increases most rapidly at P.
2. Evaluate the double integral Z Z R e ^(x^ 2+y ^2) dA where R is...
2. Evaluate the double integral Z Z R e ^(x^ 2+y ^2) dA where R is the semicircular region bounded by x ≥ 0 and x^2 + y^2 ≤ 4. 3. Find the volume of the region that is bounded above by the sphere x^2 + y^2 + z^2 = 2 and below by the paraboloid z = x^2 + y^2 . 4. Evaluate the integral Z Z R (12x^ 2 )(y^3) dA, where R is the triangle with vertices...
A joint density function of the continuous random variables x and y is a function f(x,...
A joint density function of the continuous random variables x and y is a function f(x, y) satisfying the following properties. f(x, y) ≥ 0 for all (x, y) ∞ −∞ ∞ f(x, y) dA = 1 −∞ P[(x, y)  R] =    R f(x, y) dA Show that the function is a joint density function and find the required probability. f(x, y) = 1 8 ,   0 ≤ x ≤ 1, 1 ≤ y ≤ 9 0,   elsewhere P(0 ≤...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT