Question

Differential Equations problem Given the equation - dP / dt = kP(M - P) - h...

Differential Equations problem

Given the equation - dP / dt = kP(M - P) - h

where k, h, and M are constant real numbers and P is population as a function of time t, with the initial condition P(0) = Po, find the solution for P(t).

Show your work and enough steps so another student can understand the solution.

Homework Answers

Answer #1

Please rate as high as you can.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
I have the equation dP/dt = k(M-P), and I don't know how to graph it in...
I have the equation dP/dt = k(M-P), and I don't know how to graph it in Mathematica where it's dP/dt versus P.
a. Solve the following differential equation, where r and ω are constant parameters: dP/ dt =...
a. Solve the following differential equation, where r and ω are constant parameters: dP/ dt = r(1 − cos(ωt))P b. Solve the following differential equation: y'(x) + 4xy(x) = 2xe^(−x^ 2)
Suppose that the certain population obeys the logistics equation dP / dt = 0.025·P ·(1−P /...
Suppose that the certain population obeys the logistics equation dP / dt = 0.025·P ·(1−P / C) where C is the carrying capacity. If the initial population P0 = C/3, find the time t∗ at which the initial population has doubled, i.e., find time t∗ such that P(t∗) = 2P0 = 2C/3.
Assuming that P≥0, a population is modeled by the differential equation dP/dt = 1.4P(1- P/3400) 1....
Assuming that P≥0, a population is modeled by the differential equation dP/dt = 1.4P(1- P/3400) 1. For what values of P is the population increasing? Answer (in interval notation): 2. For what values of P is the population decreasing? Answer (in interval notation): 3. What are the equilibrium solutions? Answer (separate by commas): P =
4. Consider the differential equation dy/dt = −ay with a > 0 an (unspecified) constant. (a)...
4. Consider the differential equation dy/dt = −ay with a > 0 an (unspecified) constant. (a) Write out the Euler step (i.e. yk as a function of yk−1) for the initial value problem y(t0) = y0, with arbitrary step size ∆t. (b) Find a number u > 0 such that if ∆t > u, then |yk| diverges to +∞ as k goes to +∞. The number u should be expressed as a function of the constant a. (c) Find another...
Initial value problem : Differential equations: dx/dt = x + 2y dy/dt = 2x + y...
Initial value problem : Differential equations: dx/dt = x + 2y dy/dt = 2x + y Initial conditions: x(0) = 0 y(0) = 2 a) Find the solution to this initial value problem (yes, I know, the text says that the solutions are x(t)= e^3t - e^-t and y(x) = e^3t + e^-t and but I want you to derive these solutions yourself using one of the methods we studied in chapter 4) Work this part out on paper to...
This is a differential equations problem: use variation of parameters to find the general solution to...
This is a differential equations problem: use variation of parameters to find the general solution to the differential equation given that y_1 and y_2 are linearly independent solutions to the corresponding homogeneous equation for t>0. ty"-(t+1)y'+y=18t^3 ,y_1=e^t ,y_2=(t+1) it said the answer to this was C_1e^t + C_2(t+1) - 18t^2(3/2+1/2t) I don't understand how to get this answer at all
DIFFERENTIAL EQUATIONS PROBLEM Consider a population model that is a generalization of the exponential model for...
DIFFERENTIAL EQUATIONS PROBLEM Consider a population model that is a generalization of the exponential model for population growth (dy/dt = ky). In the new model, the constant growth rate k is replaced by a growth rate r(1 - y/K). Note that the growth rate decreases linearly as the population increases. We then obtain the logistic growth model for population growth given by dy/dt = r(1-y/K)y. Here K is the max sustainable size of the population and is called the carrying...
1. Solve the given initial value problem. dy/dt = (t^3 + t)/(y^2); y(0) = 2 ....
1. Solve the given initial value problem. dy/dt = (t^3 + t)/(y^2); y(0) = 2 . 2. We know from Newton’s Law of Cooling that the rate at which a cold soda warms up is proportional to the difference between the ambient temperature of the room and the temperature of the drink. The differential equation corresponding to this situation is given by y' = k(M − y) where k is a positive constant. The solution to this equation is given...
Series Solutions of Ordinary Differential Equations For the following problems solve the given differential equation by...
Series Solutions of Ordinary Differential Equations For the following problems solve the given differential equation by means of a power series about the given point x0. Find the recurrence relation; also find the first four terms in each of two linearly independed sollutions (unless the series terminates sooner). If possible, find the general term in each solution. y"+k2x2y=0, x0=0, k-constant