Question

Let a be an element of order n in a group and d = gcd(n,k) where...

Let a be an element of order n in a group and d = gcd(n,k) where k is a positive integer.

a) Prove that <a^k> = <a^d>

b) Prove that |a^k| = n/d

c) Use the parts you proved above to find all the cyclic subgroups and their orders when |a| = 100.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
2.6.22. Let G be a cyclic group of order n. Let m ≤ n be a...
2.6.22. Let G be a cyclic group of order n. Let m ≤ n be a positive integer. How many subgroups of order m does G have? Prove your assertion.
Suppose G = < a > is a cyclic group of order N. Consider an element...
Suppose G = < a > is a cyclic group of order N. Consider an element of G, g = ak . Show that the order of g is equal to N/GCD(N,k)
Let n be a positive integer. Show that every abelian group of order n is cyclic...
Let n be a positive integer. Show that every abelian group of order n is cyclic if and only if n is not divisible by the square of any prime.
4. Let f : G→H be a group homomorphism. Suppose a∈G is an element of finite...
4. Let f : G→H be a group homomorphism. Suppose a∈G is an element of finite order n. (a) Prove that f(a) has finite order k, where k is a divisor of n. (b) If f is an isomorphism, prove that k=n.
Let G be a group (not necessarily an Abelian group) of order 425. Prove that G...
Let G be a group (not necessarily an Abelian group) of order 425. Prove that G must have an element of order 5. Note, Sylow Theorem is above us so we can't use it. We're up to Finite Orders. Thank you.
4. Let a, b, c be integers. (a) Prove if gcd(ab, c) = 1, then gcd(a,...
4. Let a, b, c be integers. (a) Prove if gcd(ab, c) = 1, then gcd(a, c) = 1 and gcd(b, c) = 1. (Hint: use the GCD characterization theorem.) (b) Prove if gcd(a, c) = 1 and gcd(b, c) = 1, then gcd(ab, c) = 1. (Hint: you can use the GCD characterization theorem again but you may need to multiply equations.) (c) You have now proved that “gcd(a, c) = 1 and gcd(b, c) = 1 if and...
Let G be a group with subgroups H and K. (a) Prove that H ∩ K...
Let G be a group with subgroups H and K. (a) Prove that H ∩ K must be a subgroup of G. (b) Give an example to show that H ∪ K is not necessarily a subgroup of G. Note: Your answer to part (a) should be a general proof that the set H ∩ K is closed under the operation of G, includes the identity element of G, and contains the inverse in G of each of its elements,...
find all generators of Z. let "a" be a group element that has infinite order. Find...
find all generators of Z. let "a" be a group element that has infinite order. Find all the generators of . Please prove and explain in detail please use definions and theorems. please i reallly want to understand this.
Let G be a group and a be an element of G. Let φ:Z→G be a...
Let G be a group and a be an element of G. Let φ:Z→G be a map defined by φ(n) =a^{n} for all n∈Z. Find the image φ(Z) and prove that φ(Z) a subgroup of G
Let f(n) be a negligible function and k a positive integer. Prove the following: (a) f(√n)...
Let f(n) be a negligible function and k a positive integer. Prove the following: (a) f(√n) is negligible. (b) f(n/k) is negligible. (c) f(n^(1/k)) is negligible.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT