Question

Prove: Proposition 11.13. Congruence modulo n is an equivalence relation on Z : (1) For every...

Prove: Proposition 11.13. Congruence modulo n is an equivalence relation on Z :

(1) For every a ∈ Z, a = a mod n.

(2) If a = b mod n then b = a mod n.

(3) If a = b mod n and b = c mod n, then a = c mod n

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
9e) fix n ∈ ℕ. Prove congruence modulo n is an equivalence relation on ℤ. How...
9e) fix n ∈ ℕ. Prove congruence modulo n is an equivalence relation on ℤ. How many equivalence classes does it have? 9f) fix n ∈ ℕ. Prove that if a ≡ b mod n and c ≡ d mod n then a + c ≡b + d mod n. 9g) fix n ∈ ℕ.Prove that if a ≡ b mod n and c ≡ d mod n then ac ≡bd mod n.
What are the equivalence classes for the relation congruence modulo 6? Please explain in detail.
What are the equivalence classes for the relation congruence modulo 6? Please explain in detail.
Define the relation τ on Z by aτ b if and only if there exists x...
Define the relation τ on Z by aτ b if and only if there exists x ∈ {1,4,16} such that ax ≡ b (mod 63). (a) Prove that τ is an equivalence relation. (b) Prove that there exists an integer n with 1 ≤ n ≤ 62 such that the equivalence class of n is{m ∈ Z | m ≡ n (mod 63)}.
(9 marks) Define the relation τ on Z by a τ b if and only if...
Define the relation τ on Z by a τ b if and only if there exists x ∈ {1, 4, 16} such that ax ≡ b (mod 63). (a) Prove that τ is an equivalence relation. (b) Prove that there exists an integer n with 1 ≤ n ≤ 62 such that the equivalence class of n is {m ∈ Z | m ≡ n (mod 63)}.
prove that n> 1 and (n-1)!congruence -1(mod n) then n is prime
prove that n> 1 and (n-1)!congruence -1(mod n) then n is prime
Prove: Let n ∈ N, a ∈ Z, and gcd(a,n) = 1. For i,j ∈ N,...
Prove: Let n ∈ N, a ∈ Z, and gcd(a,n) = 1. For i,j ∈ N, aj ≡ ai (mod n) if and only if j ≡ i (mod ordn(a)). Where ordn(a) represents the order of a modulo n. Be sure to prove both the forward and backward direction.
1. ∀n ∈ Z, prove that if ∃a, b ∈ Z such that a 2 +...
1. ∀n ∈ Z, prove that if ∃a, b ∈ Z such that a 2 + b 2 = n, then n 6≡ 3 (mod 4).
Let R be the relation on Z defined by: For any a, b ∈ Z ,...
Let R be the relation on Z defined by: For any a, b ∈ Z , aRb if and only if 4 | (a + 3b). (a) Prove that R is an equivalence relation. (b) Prove that for all integers a and b, aRb if and only if a ≡ b (mod 4)
The smallest positive solution of the congruence ax ≡ 0( mod n) is called the additive...
The smallest positive solution of the congruence ax ≡ 0( mod n) is called the additive order of a modulo n. Find the additive orders of each of the following elements by solving the appropriate congruences: (abstract algebra) (a) 20 modulo 28 (b) 8 modulo 15 (c) 7 modulo 11 (d) 9 modulo 15
For each of the following, prove that the relation is an equivalence relation. Then give the...
For each of the following, prove that the relation is an equivalence relation. Then give the information about the equivalence classes, as specified. a) The relation ∼ on R defined by x ∼ y iff x = y or xy = 2. Explicitly find the equivalence classes [2], [3], [−4/5 ], and [0] b) The relation ∼ on R+ × R+ defined by (x, y) ∼ (u, v) iff x2v = u2y. Explicitly find the equivalence classes [(5, 2)] and...