Question

Let (sn) be a sequence. Consider the set X consisting of real numbers x∈R having the...

Let (sn) be a sequence. Consider the set X consisting of real numbers x∈R having the following property: There exists N∈N s.t. for all n > N, sn< x. Prove that limsupsn= infX.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let (sn) ⊂ (0, +∞) be a sequence of real numbers. Prove that liminf 1/Sn =...
Let (sn) ⊂ (0, +∞) be a sequence of real numbers. Prove that liminf 1/Sn = 1 / limsup Sn
Do not use binomial theorem for this!! (Real analysis question) a) Let (sn) be the sequence...
Do not use binomial theorem for this!! (Real analysis question) a) Let (sn) be the sequence defined by sn = (1 +1/n)^(n). Prove that sn is an increasing sequence with sn < 3 for all n. Conclude that (sn) is convergent. The limit of (sn) is referred to as e and is used as the base for natural logarithms. b)Use the result above to find the limit of the sequences: sn = (1 +1/n)^(2n) c)sn = (1+1/n)^(n-1)
Claim: If (sn) is any sequence of real numbers with ??+1 = ??2 + 3?? for...
Claim: If (sn) is any sequence of real numbers with ??+1 = ??2 + 3?? for all n in N, then ?? ≥ 0 for all n in N. Proof: Suppose (sn) is any sequence of real numbers with ??+1 = ??2 + 3?? for all n in N. Let P(n) be the inequality statements ?? ≥ 0. Let k be in N and suppose P(k) is true: Suppose ?? ≥ 0. Note that ??+1 = ??2 + 3?? =...
Let E⊆R (R: The set of all real numbers) Prove that E is sequentially compact if...
Let E⊆R (R: The set of all real numbers) Prove that E is sequentially compact if and only if E is compact
Given that xn is a sequence of real numbers. If (xn) is a convergent sequence prove...
Given that xn is a sequence of real numbers. If (xn) is a convergent sequence prove that (xn) is bounded. That is, show that there exists C > 0 such that |xn| less than or equal to C for all n in N.
Let R*= R\ {0} be the set of nonzero real numbers. Let G= {2x2 matrix: row...
Let R*= R\ {0} be the set of nonzero real numbers. Let G= {2x2 matrix: row 1(a b) row 2 (0 a) | a in R*, b in R} (a) Prove that G is a subgroup of GL(2,R) (b) Prove that G is Abelian
Let A be the set of all real numbers, and let R be the relation "less...
Let A be the set of all real numbers, and let R be the relation "less than." Determine whether or not the given relation R, on the set A, is reflexive, symmetric, antisymmetric, or transitive.
Let R be a relation on set RxR of ordered pairs of real numbers such that...
Let R be a relation on set RxR of ordered pairs of real numbers such that (a,b)R(c,d) if a+d=b+c. Prove that R is an equivalence relation and find equivalence class [(0,b)]R
Let W be the subset of R^R consisting of all functions of the form x ?→a...
Let W be the subset of R^R consisting of all functions of the form x ?→a · cos(x − b), for real numbers a and b. Show that W is a subspace of R^R and find its dimension.
Let R be the relation on the set of real numbers such that xRy if and...
Let R be the relation on the set of real numbers such that xRy if and only if x and y are real numbers that differ by less than 1, that is, |x − y| < 1. Which of the following pair or pairs can be used as a counterexample to show this relation is not an equivalence relation? A) (1, 1) B) (1, 1.8), (1.8, 3) C) (1, 1), (3, 3) D) (1, 1), (1, 1.5)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT