Question

prove: a natural number n is prime if and only if sigma(n) = n+1

prove: a natural number n is prime if and only if sigma(n) = n+1

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
In number theory, Wilson’s theorem states that a natural number n > 1 is prime if...
In number theory, Wilson’s theorem states that a natural number n > 1 is prime if and only if (n − 1)! ≡ −1 (mod n). (a) Check that 5 is a prime number using Wilson’s theorem. (b) Let n and m be natural numbers such that m divides n. Prove the following statement “For any integer a, if a ≡ −1 (mod n), then a ≡ −1 (mod m).” You may need this fact in doing (c). (c) The...
Prove the following statement: Suppose that p is a prime number and n is a natural...
Prove the following statement: Suppose that p is a prime number and n is a natural number. If n|p then n = 1 or n = p.
Prove that a natural number m greater than 1 is prime if m has the property...
Prove that a natural number m greater than 1 is prime if m has the property that it divides at least one of a and b whenever it divides ab.
3. prove that \Sigma 1/ [n ln n (ln ln n)^p] converges if and only if...
3. prove that \Sigma 1/ [n ln n (ln ln n)^p] converges if and only if p>1.
Let A ={1-1/n | n is a natural number} Prove that 0 is a lower bound...
Let A ={1-1/n | n is a natural number} Prove that 0 is a lower bound and 1 is an upper bound:  Start by taking x in A.  Then x = 1-1/n for some natural number n.  Starting from the fact that 0 < 1/n < 1 do some algebra and arithmetic to get to 0 < 1-1/n <1. Prove that lub(A) = 1:  Suppose that r is another upper bound.  Then wts that r<= 1.  Suppose not.  Then r<1.  So 1-r>0....
4. Prove that if p is a prime number greater than 3, then p is of...
4. Prove that if p is a prime number greater than 3, then p is of the form 3k + 1 or 3k + 2. 5. Prove that if p is a prime number, then n √p is irrational for every integer n ≥ 2. 6. Prove or disprove that 3 is the only prime number of the form n2 −1. 7. Prove that if a is a positive integer of the form 3n+2, then at least one prime divisor...
Using induction, prove the following: i.) If a > -1 and n is a natural number,...
Using induction, prove the following: i.) If a > -1 and n is a natural number, then (1 + a)^n >= 1 + na ii.) If a and b are natural numbers, then a + b and ab are also natural
Prove by induction. a ) If a, n ∈ N and a∣n then a ≤ n....
Prove by induction. a ) If a, n ∈ N and a∣n then a ≤ n. b) For any n ∈ N and any set S = {p1, . . . , pn} of prime numbers, there is a prime number which is not in S. c) Prove using strong induction that every natural number n > 1 is divisible by a prime.
Prove why 11 is the only palindromic number that is prime.
Prove why 11 is the only palindromic number that is prime.
A natural number p is a prime number provided that the only integers dividing p are...
A natural number p is a prime number provided that the only integers dividing p are 1 and p itself. In fact, for p to be a prime number, it is the same as requiring that “For all integers x and y, if p divides xy, then p divides x or p divides y.” Use this property to show that “If p is a prime number, then √p is an irrational number.” Please write down a formal proof.