Question

Let g be a positive integer. Prove that if the regular g-sided polygon is constructible, so...

Let g be a positive integer. Prove that if the regular g-sided polygon is constructible, so is the regular 2g-sided polygon.

Let p and q be two prime integers. Prove that if the regular p-sided and q-sided polygons are constructible so is the regular pq-sided polygon.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Problem 2: (i) Let a be an integer. Prove that 2|a if and only if 2|a3....
Problem 2: (i) Let a be an integer. Prove that 2|a if and only if 2|a3. (ii) Prove that 3√2 (cube root) is irrational. Problem 3: Let p and q be prime numbers. (i) Prove by contradiction that if p+q is prime, then p = 2 or q = 2 (ii) Prove using the method of subsection 2.2.3 in our book that if p+q is prime, then p = 2 or q = 2 Proposition 2.2.3. For all n ∈...
Let a be prime and b be a positive integer. Prove/disprove, that if a divides b^2...
Let a be prime and b be a positive integer. Prove/disprove, that if a divides b^2 then a divides b.
Let p,q be prime numbers, not necessarily distinct. If a group G has order pq, prove...
Let p,q be prime numbers, not necessarily distinct. If a group G has order pq, prove that any proper subgroup (meaning a subgroup not equal to G itself) must be cyclic. Hint: what are the possible sizes of the subgroups?
Prove that there is no positive integer n so that 25 < n2 < 36. Prove...
Prove that there is no positive integer n so that 25 < n2 < 36. Prove this by directly proving the negation. Your proof must only use integers, inequalities and elementary logic. You may use that inequalities are preserved by adding a number on both sides, or by multiplying both sides by a positive number. You cannot use the square root function. Do not write a proof by contradiction.
9. Let a, b, q be positive integers, and r be an integer with 0 ≤...
9. Let a, b, q be positive integers, and r be an integer with 0 ≤ r < b. (a) Explain why gcd(a, b) = gcd(b, a). (b) Prove that gcd(a, 0) = a. (c) Prove that if a = bq + r, then gcd(a, b) = gcd(b, r).
Prove that there is no positive integer n so that 25 < n^2 < 36. Prove...
Prove that there is no positive integer n so that 25 < n^2 < 36. Prove this by directly proving the negation.Your proof must only use integers, inequalities and elementary logic. You may use that inequalities are preserved by adding a number on both sides,or by multiplying both sides by a positive number. You cannot use the square root function. Do not write a proof by contradiction.
Hi I am trying to prove this statement but I'm not sure how to go about...
Hi I am trying to prove this statement but I'm not sure how to go about doing so. The statement is: Let q be greater than or equal to 2 be a positive integer. If for all integers a and a,whenever q|ab, q|a, or q|b, then q is prime.
Let G be a finite group and let H, K be normal subgroups of G. If...
Let G be a finite group and let H, K be normal subgroups of G. If [G : H] = p and [G : K] = q where p and q are distinct primes, prove that pq divides [G : H ∩ K].
4) Let F be a finite field. Prove that there exists an integer n ≥ 1,...
4) Let F be a finite field. Prove that there exists an integer n ≥ 1, such that n.1F = 0F . Show further that the smallest positive integer with this property is a prime number.
Let a positive integer n be called a super exponential number if its prime factorization contains...
Let a positive integer n be called a super exponential number if its prime factorization contains at least one prime to a power of 1000 or larger. Prove or disprove the following statement: There exist two consecutive super exponential numbers.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT