Question

5.1.5. Suppose V1, V2, W are vector spaces over F. Prove that f : V1 ×...

5.1.5. Suppose V1, V2, W are vector spaces over F. Prove that f : V1 × V2 → W is the zero map if and only if f is both linear and bilinear.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
. Let {v1,v2,…,vk} be a dependent system of generators of a vector space V. Prove that...
. Let {v1,v2,…,vk} be a dependent system of generators of a vector space V. Prove that every vector w∈V can expressed in multiple ways as a linear combination of these generators.  
Let V and W be finite-dimensional vector spaces over F, and let φ : V →...
Let V and W be finite-dimensional vector spaces over F, and let φ : V → W be a linear transformation. Let dim(ker(φ)) = k, dim(V ) = n, and 0 < k < n. A basis of ker(φ), {v1, . . . , vk}, can be extended to a basis of V , {v1, . . . , vk, vk+1, . . . , vn}, for some vectors vk+1, . . . , vn ∈ V . Prove that...
Prove that if W^6 is not in the span{v1, v2, . . . , vk}, then...
Prove that if W^6 is not in the span{v1, v2, . . . , vk}, then span{v1, v2, . . . , vk} ⊂ span{v1, v2, . . . , vk, w}. (Notice that the inclusion got to be proven to be a strict inclusion.)
Suppose v1, v2, . . . , vn is linearly independent in V and w ∈...
Suppose v1, v2, . . . , vn is linearly independent in V and w ∈ V . Show that v1, v2, . . . , vn, w is linearly independent if and only if w ∈/ Span(v1, v2, . . . , vn).
Let V be a vector space and let v1,v2,...,vn be elements of V . Let W...
Let V be a vector space and let v1,v2,...,vn be elements of V . Let W = span(v1,...,vn). Assume v ∈ V and ˆ v ∈ V but v / ∈ W and ˆ v / ∈ W. Define W1 = span(v1,...,vn,v) and W2 = span(v1,...,vn, ˆ v). Prove that either W1 = W2 or W1 ∩W2 = W.
† Let β={v1,v2,…,vn} be a basis for a vector space V and T:V→V be a linear...
† Let β={v1,v2,…,vn} be a basis for a vector space V and T:V→V be a linear transformation. Prove that [T]β is upper triangular if and only if T(vj)∈span({v1,v2,…,vj}) j=1,2,…,n. Visit goo.gl/k9ZrQb for a solution.
Let (V, |· |v ) and (W, |· |w ) be normed vector spaces. Let T...
Let (V, |· |v ) and (W, |· |w ) be normed vector spaces. Let T : V → W be linear map. The kernel of T, denoted ker(T), is defined to be the set ker(T) = {v ∈ V : T(v) = 0}. Then ker(T) is a linear subspace of V . Let W be a closed subspace of V with W not equal to V . Prove that W is nowhere dense in V .
Let X be a real vector space. Suppose {⃗v1,⃗v2,⃗v3} ⊂ X is a linearly independent set,...
Let X be a real vector space. Suppose {⃗v1,⃗v2,⃗v3} ⊂ X is a linearly independent set, and suppose {w⃗1,w⃗2,w⃗3} ⊂ X is a linearly dependent set. Define V = span{⃗v1,⃗v2,⃗v3} and W = span{w⃗1,w⃗2,w⃗3}. (a) Is there a linear transformation P : V → W such that P(⃗vi) = w⃗i for i = 1, 2, 3? (b) Is there a linear transformation Q : W → V such that Q(w⃗i) = ⃗vi for i = 1, 2, 3? Hint: the...
Prove that Let S={v1,v2,v3} be a linearly indepedent set of vectors om a vector space V....
Prove that Let S={v1,v2,v3} be a linearly indepedent set of vectors om a vector space V. Then so are {v1},{v2},{v3},{v1,v2},{v1,v3},{v2,v3}
3. Let V and W be finite-dimensional vector spaces over field F with dim(V) = n...
3. Let V and W be finite-dimensional vector spaces over field F with dim(V) = n and dim(W) = m, and let φ : V → W be a linear transformation. Fill in the six blanks to give bounds on the sizes of the dimension of ker(φ) and the dimension of im(φ). 3. Let V and W be finite-dimensional vector spaces over field F with dim(V ) = n and dim(W) = m, and let φ : V → W...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT