Question

Subject: Real Analysis: I need the proof and a case where the proof is true, an...

Subject: Real Analysis:

I need the proof and a case where the proof is true, an example, of the following:

1.- Given a sequence that is not convergent, write a formal proof that it is not convergent.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Write a formal proof to prove the following conjecture to be true or false. If the...
Write a formal proof to prove the following conjecture to be true or false. If the statement is true, write a formal proof of it. If the statement is false, provide a counterexample and a slightly modified statement that is true and write a formal proof of your new statement. Conjecture: There does not exist a pair of integers m and n such that m^2 - 4n = 2.
Determine if the following statements are true or false. In either case, provide a formal proof...
Determine if the following statements are true or false. In either case, provide a formal proof using the definitions of the big-O, big-Omega, and big-Theta notations. For instance, to formally prove that f (n) ∈ O(g(n)) or f (n) ∉ O(g(n)), we need to demonstrate the existence of a constant c and a sufficient large n0 such that f (n) ≤ c g(n) for all n ≥ n0, or showing that there are no such values. a) [1 mark] 10000n2...
1.- Prove the following: a.- Apply the definition of convergent sequence, Ratio Test or Squeeze Theorem...
1.- Prove the following: a.- Apply the definition of convergent sequence, Ratio Test or Squeeze Theorem to prove that a given sequence converges. b.- Use the Divergence Criterion for Sub-sequences to prove that a given sequence does not converge. Subject: Real Analysis
I need pestle analysis on real estate project.
I need pestle analysis on real estate project.
In this task, you will write a proof to analyze the limit of a sequence. ASSUMPTIONS...
In this task, you will write a proof to analyze the limit of a sequence. ASSUMPTIONS Definition: A sequence {an} for n = 1 to ∞ converges to a real number A if and only if for each ε > 0 there is a positive integer N such that for all n ≥ N, |an – A| < ε . Let P be 6. and Let Q be 24. Define your sequence to be an = 4 + 1/(Pn +...
In this task, you will write a proof to analyze the limit of a sequence. ASSUMPTIONS...
In this task, you will write a proof to analyze the limit of a sequence. ASSUMPTIONS Definition: A sequence {an} for n = 1 to ∞ converges to a real number A if and only if for each ε > 0 there is a positive integer N such that for all n ≥ N, |an – A| < ε . Let P be 6. and Let Q be 24. Define your sequence to be an = 4 + 1/(Pn +...
Question about the Mathematical Real Analysis Proof Show that if xn → 0 then √xn →...
Question about the Mathematical Real Analysis Proof Show that if xn → 0 then √xn → 0. Proof. Let ε > 0 be arbitrary. Since xn → 0 there is some N ∈N such that |xn| < ε^2 for all n > N. Then for all n > N we have that |√xn| < ε My question is based on the sequence convergence definition it should be absolute an-a<ε    but here why we can take xn<ε^2 rather than ε?...
I study mathematics-economics in the second year of a bachelor programme: I’m one month into the...
I study mathematics-economics in the second year of a bachelor programme: I’m one month into the course “Analysis I”. I would like to get more familiar with certain subjects. For a reasonable answer for this Q&A, I’d like a formal definition, a simple example/proof and summary of the mentioned subject. The subject is sequences and convergence.
I study mathematics-economics in the second year of a bachelor programme: I’m one month into the...
I study mathematics-economics in the second year of a bachelor programme: I’m one month into the course “Analysis I”. I would like to get more familiar with certain subjects. For a reasonable answer for this Q&A, I’d like a formal definition, a simple example/proof and summary of the mentioned subject. The subject is the sum, product and composition of continuous functions.
I study mathematics-economics in the second year of a bachelor programme: I’m one month into the...
I study mathematics-economics in the second year of a bachelor programme: I’m one month into the course “Analysis I”. I would like to get more familiar with certain subjects. For a reasonable answer for this Q&A, I’d like a formal definition, a simple example/proof and summary of the mentioned subject. The subject is the sum, product and composition of differentiable functions.