Question

Suppose g : (a,b) ? R^n is a differentiable parametrized curve with the property that at...

Suppose g : (a,b) ? R^n is a differentiable parametrized curve with the property that at each t, the position and velocity vectors are orthogonal. Prove that g lies on a sphere centered at the origin.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose β = β(s) is a curve parametrized by arc-length. If β lies on a sphere...
Suppose β = β(s) is a curve parametrized by arc-length. If β lies on a sphere of center c and radius r, prove β −c = −ρn−ρ0σb where ρ = 1/κ and σ = 1/τ.
1. A plane curve has been parametrized with the following vector-valued function, r(t) = (t +...
1. A plane curve has been parametrized with the following vector-valued function, r(t) = (t + 2)i + (-2t2 + t + 1)j a. Carefully make 2 sketches of the plane curve over the interval . (5 pts) b. Compute the velocity and acceleration vectors, v(t) and a(t). (6 pts) c. On the 1st graph, sketch the position, velocity and acceleration vectors at t=-1. (5 pts) d. Compute the unit tangent and principal unit normal vectors, T and N at...
Suppose that f and g are infinitely differentiable functions defined on R. Suppose that Pf is...
Suppose that f and g are infinitely differentiable functions defined on R. Suppose that Pf is the second order Taylor polynomial for f centered at 0 and that Pg is the second order Taylor polynomial for g centered at 0. Let Pfg be the second order Taylor polynomial for fg centered at 0. Is Pfg = PfPg? If not, is there a relationship between Pfg and PfPg ?
Curve given below, find the vectors T, N, and B at the point given. r(t) =...
Curve given below, find the vectors T, N, and B at the point given. r(t) = ⟨cost, sint, lncost⟩, (1,0,0)
Let C be a closed curve parametrized by r(t) = sin ti+cos tj with 0 ≤...
Let C be a closed curve parametrized by r(t) = sin ti+cos tj with 0 ≤ t ≤ 2π. Let F = yi − xj be a vector field. (a) Evaluate the line integral xyds. C (b) Find the circulation of F over C. (c) Find the flux of F over C.
a) Let f : [a, b] −→ R and g : [a, b] −→ R be...
a) Let f : [a, b] −→ R and g : [a, b] −→ R be differentiable. Then f and g differ by a constant if and only if f ' (x) = g ' (x) for all x ∈ [a, b]. b) For c > 0, prove that the following equation does not have two solutions. x3− 3x + c = 0, 0 < x < 1 c) Let f : [a, b] → R be a differentiable function...
A parametric curve r (t) has the property that r ″ ( t ) = (...
A parametric curve r (t) has the property that r ″ ( t ) = ( 1 , 0 , 2 t ) and r ′ (0) = (1 , − 1 , − 1) The tangent line to this curve is parallel to the xy-plane when t = A.None of the above / The tangent line is never parallel to the xy-plane B. 1 and -1 C. 0 D. -1
4) Consider the polar curve r=e2theta a) Find the parametric equations x = f(θ), y =...
4) Consider the polar curve r=e2theta a) Find the parametric equations x = f(θ), y = g(θ) for this curve. b) Find the slope of the line tangent to this curve when θ=π. 6) a)Suppose r(t) = < cos(3t), sin(3t),4t >. Find the equation of the tangent line to r(t) at the point (-1, 0, 4pi). b) Find a vector orthogonal to the plane through the points P (1, 1, 1), Q(2, 0, 3), and R(1, 1, 2) and the...
Let a > b. Suppose a particle moves in an elliptical path given by r(t) =...
Let a > b. Suppose a particle moves in an elliptical path given by r(t) = (a cos ωt) i+(b sin ωt) j where ω > 0. Sketch its velocity and acceleration vectors at one of the vertices of the ellipse (±a, 0).
please ASAP!! Suppose that a particle has the following acceleration vector and initial velocity and position...
please ASAP!! Suppose that a particle has the following acceleration vector and initial velocity and position vectors. a(t)  =  5 i  +  9t k,    v(0)  =  3 i  −  j,    r(0)  =  j  +  6 k (a) Find the velocity of the particle at time t. (b) Find the position of the particle at time t.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT