Question

In this problem we consider an equation in differential form ???+???=0 The equation (6?^(1/?)+4?^3?^−3)??+(6?^2?^−2+4)??=0 in differential...

In this problem we consider an equation in differential form ???+???=0 The equation

(6?^(1/?)+4?^3?^−3)??+(6?^2?^−2+4)??=0

in differential form ?˜??+?˜??=0 is not exact. Indeed, we have

?˜?−?˜?/M=______

is a function of ? alone.

Namely we have μ(y)=

Multiplying the original equation by the integrating factor we obtain a new equation ???+???=0

?=____

?=_____

Which is exact since

??=______

??=_______

are equal.

This problem is exact. Therefore an implicit general solution can be written in the form  ?(?,?)=?F

where

?(?,?)=__________

Homework Answers

Answer #1

Answer question

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A) In this problem we consider an equation in differential form ???+???=0Mdx+Ndy=0. The equation (5?^4?+4cos(2?)?^−4)??+(5?^5−3?^−4)??=0 in...
A) In this problem we consider an equation in differential form ???+???=0Mdx+Ndy=0. The equation (5?^4?+4cos(2?)?^−4)??+(5?^5−3?^−4)??=0 in differential form ?˜??+?˜??=0 is not exact. Indeed, we have My-Mx= ________ 5x^4-4(4)cos(2x)*y^(-5)-25x^4 (My-Mn)/M=_____ -4/y in function y alone. ?(?)= _____y^4 Multiplying the original equation by the integrating factor we obtain a new equation ???+???=0 where M=____ N=_____ which is exact since My=_____ Nx=______ This problem is exact. Therefore an implicit general solution can be written in the form  ?(?,?)=? where ?(?,?)=_________ Finally find the value...
In this problem we consider an equation in differential form ???+???=0. (8(1+ln(?)))??+(−(5?4))??=0 Find ??=(0) correct answer...
In this problem we consider an equation in differential form ???+???=0. (8(1+ln(?)))??+(−(5?4))??=0 Find ??=(0) correct answer ??= (0) correct answer If the problem is exact find a function ?(?,?) whose differential, ??(?,?) is the left hand side of the differential equation. That is, level curves ?(?,?)=?, give implicit general solutions to the differential equation. If the equation is not exact, enter NE otherwise find ?(?,?) (note you are not asked to enter ?) ?(?,?)=8x+xlnx-x (incorrect)
(1 point) In this problem we consider an equation in differential form Mdx+Ndy=0Mdx+Ndy=0.The equation (4e−2y−(20x4y5e−x+2e−xsin(x)))dx+(−(20x5y4e−x+8e−2y))dy=0(4e−2y−(20x4y5e−x+2e−xsin(x)))dx+(−(20x5y4e−x+8e−2y))dy=0 in...
(1 point) In this problem we consider an equation in differential form Mdx+Ndy=0Mdx+Ndy=0.The equation (4e−2y−(20x4y5e−x+2e−xsin(x)))dx+(−(20x5y4e−x+8e−2y))dy=0(4e−2y−(20x4y5e−x+2e−xsin(x)))dx+(−(20x5y4e−x+8e−2y))dy=0 in differential form M˜dx+N˜dy=0M~dx+N~dy=0 is not exact. Indeed, we have M˜y−N˜x=
Consider the differential equation y′′+ 9y′= 0.( a) Let u=y′=dy/dt. Rewrite the differential equation as a...
Consider the differential equation y′′+ 9y′= 0.( a) Let u=y′=dy/dt. Rewrite the differential equation as a first-order differential equation in terms of the variables u. Solve the first-order differential equation for u (using either separation of variables or an integrating factor) and integrate u to find y. (b) Write out the auxiliary equation for the differential equation and use the methods of Section 4.2/4.3 to find the general solution. (c) Find the solution to the initial value problem y′′+ 9y′=...
If ?1 = ?−4? cos ? is a solution from the differential equation ?′′′ + 6?′′...
If ?1 = ?−4? cos ? is a solution from the differential equation ?′′′ + 6?′′ + ?′ − 34? = 0. ¿What is the general solution for the differential equation?
Consider the following initial value problem: dx/dt + 7x/t = et^4, x(1) =2 (a) Find an...
Consider the following initial value problem: dx/dt + 7x/t = et^4, x(1) =2 (a) Find an integrating factor for the differential equation. (b) Use the integrating factor to solve the initial value problem
(* Problem 3 *) (* Consider differential equations of the form a(x) + b(x)dy /dx=0 *)...
(* Problem 3 *) (* Consider differential equations of the form a(x) + b(x)dy /dx=0 *) \ (* Use mathematica to determin if they are in Exact form or not. If they are, use CountourPlot to graph the different solution curves 3.a 3x^2+y + (x+3y^2)dy /dx=0 3.b cos(x) + sin(x) dy /dx=0 3.c y e^xy+ x e^xydy/dx=0
The differential equation dydx=72/(y^1/4+64x^2y^1/4) has an implicit general solution of the form F(x,y)=K, where K is...
The differential equation dydx=72/(y^1/4+64x^2y^1/4) has an implicit general solution of the form F(x,y)=K, where K is an arbitrary constant. In fact, because the differential equation is separable, we can define the solution curve implicitly by a function in the form F(x,y)=G(x)+H(y)=K Find such a solution and then give the related functions requested. F(x,y)=G(x)+H(y)=
Consider the differential equation 4x2y′′ − 8x2y′ + (4x2 + 1)y = 0 (a) Verify that...
Consider the differential equation 4x2y′′ − 8x2y′ + (4x2 + 1)y = 0 (a) Verify that x0 = 0 is a regular singular point of the differential equation and then find one solution as a Frobenius series centered at x0 = 0. The indicial equation has a single root with multiplicity two. Therefore the differential equation has only one Frobenius series solution. Write your solution in terms of familiar elementary functions. (b) Use Reduction of Order to find a second...
Consider the first order separable equation y′=12x^3y(1+2x^4)^1/2. An implicit general solution can be written in the...
Consider the first order separable equation y′=12x^3y(1+2x^4)^1/2. An implicit general solution can be written in the form y=Cf(x) for some function f(x) with C an arbitrary constant. Here f(x)= Next find the explicit solution of the initial value problem y(0)=1 y=