Question

Prove that if the complete graph Kn can be decomposed into 5-cycles (i.e., each edge of...

Prove that if the complete graph Kn can be decomposed into 5-cycles (i.e., each edge of Kn appears in exactly one of the 5-cycles of the decomposition), then n-1 or n-5 is divisiable by 10.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
GRAPH THEORY: Let G be a graph which can be decomposed into Hamilton cycles. Prove that...
GRAPH THEORY: Let G be a graph which can be decomposed into Hamilton cycles. Prove that G must be k-regular, and that k must be even. Prove that if G has an even number of vertices, then the edge chromatic number of G is Δ(G)=k.
Let ? be a connected graph with at least one edge. (a) Prove that each vertex...
Let ? be a connected graph with at least one edge. (a) Prove that each vertex of ? is saturated by some maximum matching in ?. (b) Prove or disprove the following: Every edge of ? is in some maximum matching of ?.
A Hamiltonian cycle is a graph cycle (i.e., closed loop) through a graph that visits each...
A Hamiltonian cycle is a graph cycle (i.e., closed loop) through a graph that visits each vertex exactly once. A graph is called Hamiltonian if it contains a Hamiltonian cycle. Suppose a graph is composed of two components, both of which are Hamiltonian. Find the minimum number of edges that one needs to add to obtain a Hamiltonian graph. Prove your answer.
Prove that if G is a connected graph with exactly 4 vertices of odd degree, there...
Prove that if G is a connected graph with exactly 4 vertices of odd degree, there exist two trails in G such that each edge is in exactly one trail. Find a graph with 4 vertices of odd degree that’s not connected for which this isn’t true.
(a) Prove that there does not exist a graph with 5 vertices with degree equal to...
(a) Prove that there does not exist a graph with 5 vertices with degree equal to 4,4,4,4,2. (b) Prove that there exists a graph with 2n vertices with degrees 1,1,2,2,3,3,..., n-1,n-1,n,n.
Prove that the order of complete graph on n ≥ 2 vertices is (n−1)n 2 by......
Prove that the order of complete graph on n ≥ 2 vertices is (n−1)n 2 by... a) Using theorem Ʃv∈V = d(v) = 2|E|. b) Using induction on the number of vertices, n for n ≥ 2.
Let G be a connected simple graph with n vertices and m edges. Prove that G...
Let G be a connected simple graph with n vertices and m edges. Prove that G contains at least m−n+ 1 different subgraphs which are polygons (=circuits). Note: Different polygons can have edges in common. For instance, a square with a diagonal edge has three different polygons (the square and two different triangles) even though every pair of polygons have at least one edge in common.
Prove that for each k ≥ 1, a graph which is regular with degree 2k can...
Prove that for each k ≥ 1, a graph which is regular with degree 2k can never have a bridge.
# Problem Description Given a directed graph G = (V,E) with edge length l(e) > 0...
# Problem Description Given a directed graph G = (V,E) with edge length l(e) > 0 for any e in E, and a source vertex s. Use Dijkstra’s algorithm to calculate distance(s,v) for all of the vertices v in V. (You can implement your own priority queue or use the build-in function for C++/Python) # Input The graph has `n` vertices and `m` edges. There are m + 1 lines, the first line gives three numbers `n`,`m` and `s`(1 <=...
Complete the following table accurately. [5 Marks]      Draw the TC, MR, MC in one graph Q...
Complete the following table accurately. [5 Marks]      Draw the TC, MR, MC in one graph Q TFC TVC TC P=MR TR MC Profit 0 $10 0 $15 1 10 2 15 3 20 4 30 5 50 6 80
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT