Question

Let A, B, C, D be sets, and consider the following: Theorem 1. A × (B...

Let A, B, C, D be sets, and consider the following:

Theorem 1. A × (B ∪ C) = (A × B) ∪ (A × C).

Theorem 2. (A × B) ∩ (C × D) = (A ∩ C) × (B ∩ D).

Theorem 3. (A × B) ∆ (C × D) = (A ∆ C) × (B ∆ D).

For each, give a proof or counterexample.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let A,B,C be arbitrary sets. Prove or find a counterexample to each of the following statements:...
Let A,B,C be arbitrary sets. Prove or find a counterexample to each of the following statements: (a) (A\B)×(C \D) = (A×C)\(B×D) (b) A ⊆ B ⇔ A⊕B ⊆ B (c) A\(B∪C) = (A\B)∩(A\C) (d) A ⊆ (B∪C) ⇔ (A ⊆ B)∨(A ⊆ C) (e) A ⊆ (B∩C) ⇔ (A ⊆ B)∧(A ⊆ C)
Let A, B, C and D be sets. Prove that A\B ⊆ C \D if and...
Let A, B, C and D be sets. Prove that A\B ⊆ C \D if and only if A ⊆ B ∪C and A∩D ⊆ B
Consider Theorem 3.25: Theorem 3.25. Let f : A → B, let S, T ⊆ A,...
Consider Theorem 3.25: Theorem 3.25. Let f : A → B, let S, T ⊆ A, and let V , W ⊆ B. 1. f(S ∪T) = f(S)∪f(T) 2. f(S ∩T) ⊆ f(S)∩f(T) 3. f-1(V ∪W) = f-1(V )∪f−1(W) 4. f-1(V ∩W) = f-1(V )∩f−1(W) (a) Prove statement (2). (b) Give an explicit example where the two sides are not equal. (c) Prove that if f is one-to-one then the two sides must be equal.
Let A, B, C and D be sets. Prove that A \ B and C \...
Let A, B, C and D be sets. Prove that A \ B and C \ D are disjoint if and only if A ∩ C ⊆ B ∪ D.
. The distance between two nonempty sets A ⊆ R and B ⊆ R is defined...
. The distance between two nonempty sets A ⊆ R and B ⊆ R is defined as follows: d(A,B) = inf{|a − b| | a ∈ A,b ∈ B}. (a) Find the distance between A ={1/ n | n ∈ N } and B ={1 − 1 /n | n ∈ N } (b) Give a proof or a counterexample for the following statement: If d(A,B) > 0 then A ∩ B = ∅. can someone please help me with...
Let A and B be sets. Consider the following statement: A ∪ (B − A) ⊆...
Let A and B be sets. Consider the following statement: A ∪ (B − A) ⊆ A ∪ B a) Draw and label a Venn diagram to illustrate this statement. b) Prove this statement. please clearly show illustration and work
1. Let S = {a, b, c}. Find a set T such that S ∈ T...
1. Let S = {a, b, c}. Find a set T such that S ∈ T and S ⊂ T. 2. Let A = {1, 2, ..., 10}. Give an example of two sets S and B such that S ⊂ P(A), |S| = 4, B ∈ S and |B| = 2. 3. Let U = {1, 2, 3} be the universal set and let A = {1, 2}, B = {2, 3} and C = {1, 3}. Determine the...
1. Write the following sets in list form. (For example, {x | x ∈N,1 ≤ x...
1. Write the following sets in list form. (For example, {x | x ∈N,1 ≤ x < 6} would be {1,2,3,4,5}.) (a) {a | a ∈Z,a2 ≤ 1}. (b) {b2 | b ∈Z,−2 ≤ b ≤ 2} (c) {c | c2 −4c−5 = 0}. (d) {d | d ∈R,d2 < 0}. 2. Let S be the set {1,2,{1,3},{2}}. Answer true or false: (a) 1 ∈ S. (b) {2}⊆ S. (c) 3 ∈ S. (d) {1,3}∈ S. (e) {1,2}∈ S (f)...
(10) Consider the following property: For all sets A, B and C, (A-B)∩(A-C)=A-(B∪C) a. Construct a...
(10) Consider the following property: For all sets A, B and C, (A-B)∩(A-C)=A-(B∪C) a. Construct a proof of this property using set definitions. b. Prove this property using a set-membership table, clearly stating how the table proves the property. c. Illustrate this property using Venn diagrams, clearly stating how the diagram proves the property. You must use a separate Venn diagram for the set on the left hand side of the equal sign, and for the set on the right...
Using the following theorem: If A and B are disjoint denumerable sets, then A ∪ B...
Using the following theorem: If A and B are disjoint denumerable sets, then A ∪ B is denumerable, prove the union of a finite pairwise disjoint family of denumerable sets {Ai :1,2,3,....,n} is denumerable
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT