Question

For each of the following questions, consider a function, f(x) that is continuous on [a,b]. How...

For each of the following questions, consider a function, f(x) that is continuous on [a,b].

  1. How would you find the critical values of f(x)? Explain.

  2. Where would f(x) be increasing/decreasing? Explain.

  3. At what possible x values would f(x) have extrema? Explain.

  4. Is it possible that f(x) is continuous and has no extrema on the interval [a,b]? Use the Extreme Value Theorem to explain your response.

  5. If f’’(c) = 0, c in (a,b), and f’’(x) > 0 for all x values in (a,c) and (c,b), is it possible for the point (x,f(c)) to be an inflection point? Explain.

  6. Explain how one would use the following tests:

1st Derivative Test:

2nd Derivative Test:

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the function f(x) = x^2/x-1 with f ' (x) = x^2-2x/ (x - 1)^2 and...
Consider the function f(x) = x^2/x-1 with f ' (x) = x^2-2x/ (x - 1)^2 and f '' (x) = 2 / (x - 1)^3 are given. Use these to answer the following questions. (a) [5 marks] Find all critical points and determine the intervals where f(x) is increasing and where it is decreasing, use the First Derivative Test to fifind local extreme value if any exists. (b) Determine the intervals where f(x) is concave upward and where it is...
Consider the function f(x) = −x3 + 4x2 + 7x + 1. (a) Use the first...
Consider the function f(x) = −x3 + 4x2 + 7x + 1. (a) Use the first and second derivative tests to determine the intervals of increase and decrease, the local maxima and minima, the intervals of concavity, and the points of inflection. (b) Use your work in part (a) to compute a suitable table of x-values and corresponding y-values and carefully sketch the graph of the function f(x). In your graph, make sure to indicate any local extrema and any...
question #1: Consider the following function. f(x) = 16 − x2,     x ≤ 0 −7x,     x...
question #1: Consider the following function. f(x) = 16 − x2,     x ≤ 0 −7x,     x > 0 (a) Find the critical numbers of f. (Enter your answers as a comma-separated list.) x = (b) Find the open intervals on which the function is increasing or decreasing. (Enter your answers using interval notation. If an answer does not exist, enter DNE.) increasing     decreasing   question#2: Consider the following function. f(x) = 2x + 1,     x ≤ −1 x2 − 2,     x...
Consider the function on the interval (0, 2π). f(x) = sin(x)/ 2 + (cos(x))2 (a) Find...
Consider the function on the interval (0, 2π). f(x) = sin(x)/ 2 + (cos(x))2 (a) Find the open intervals on which the function is increasing or decreasing. (Enter your answers using interval notation.) increasing     decreasing     (b) Apply the First Derivative Test to identify the relative extrema. relative maximum     (x, y) =    relative minimum (x, y) =
Consider the function on the interval (0, 2π). f(x) = sin(x) cos(x) + 4. (A) Find...
Consider the function on the interval (0, 2π). f(x) = sin(x) cos(x) + 4. (A) Find the open interval(s) on which the function is increasing or decreasing. (Enter your answers using interval notation.) (B) Apply the First Derivative Test to identify all relative extrema.
f(x) = 10/cos-1(x). Use calculus to determine: a) all critical values b) any local extrema c)...
f(x) = 10/cos-1(x). Use calculus to determine: a) all critical values b) any local extrema c) any absolute extrema d) the intervals where f is increasing/decreasing e) any points of inflection rounded to the thousandths place f) intervals where f is concave up/down
Given the function g(x) = x3-3x + 1, use the first and second derivative tests to...
Given the function g(x) = x3-3x + 1, use the first and second derivative tests to (a) Find the intervals where g(x) is increasing and decreasing. (b) Find the points where the function reaches all realtive maxima and minima. (c) Determine the intervals for which g(x) is concave up and concave down. (d) Determine all points of inflection for g(x). (e) Graph g(x). Label your axes, extrema, and point(s) of inflection.
Sketch the graph of a function f that is continuous on (−∞,∞) and has all of...
Sketch the graph of a function f that is continuous on (−∞,∞) and has all of the following properties: (a) f0(1) is undefined (b) f0(x) > 0 on (−∞,−1) (c) f is decreasing on (−1,∞). Sketch a function f on some interval where f has one inflection point, but no local extrema.
For f(x) xe-x ( a) Find the local extrema by hand using the first derivative and...
For f(x) xe-x ( a) Find the local extrema by hand using the first derivative and a sign chart. b) Find the open intervals where the function is increasing and where it is decreasing. c) Find the intervals of concavity and inflection points by hand. d) Sketch a reasonable graph showing all this behavior . Indicate the coordinates of the local extrema and inflections.
f(x)= x^4-2x^2-3. Using the first derivative test, find: a. All critical Numbers b. Intervals on which...
f(x)= x^4-2x^2-3. Using the first derivative test, find: a. All critical Numbers b. Intervals on which f(x) is increasing or decreasing c. location and value of all relative extrema
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT