Question

Let X = {1, 2, 3, 4} and Y = {2, 3, 4, 5}. Define f...

Let X = {1, 2, 3, 4} and Y = {2, 3, 4, 5}. Define f : X → Y by 1, 2, 3, 4 → 4, 2, 5, 3. Check that f is one to one and onto and find the inverse function f -1.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let X = [0, 1) and Y = (0, 2). a. Define a 1-1 function from...
Let X = [0, 1) and Y = (0, 2). a. Define a 1-1 function from X to Y that is NOT onto Y . Prove that it is not onto Y . b. Define a 1-1 function from Y to X that is NOT onto X. Prove that it is not onto X. c. How can we use this to prove that [0, 1) ∼ (0, 2)?
Let A = {1, 2, 3, 4, 5, 6}. In each of the following, give an...
Let A = {1, 2, 3, 4, 5, 6}. In each of the following, give an example of a function f: A -> A with the indicated properties, or explain why no such function exists. (a) f is bijective, but is not the identity function f(x) = x. (b) f is neither one-to-one nor onto. (c) f is one-to-one, but not onto. (d) f is onto, but not one-to-one.
1. Let f(x)=−x^2+13x+4 a.Find the derivative f '(x) b. Find f '(−3) 2. Let f(x)=2x^2−4x+7/5x^2+5x−9, evaluate...
1. Let f(x)=−x^2+13x+4 a.Find the derivative f '(x) b. Find f '(−3) 2. Let f(x)=2x^2−4x+7/5x^2+5x−9, evaluate f '(x) at x=3 rounded to 2 decimal places. f '(3)= 3. Let f(x)=(x^3+4x+2)(160−5x) find f ′(x). f '(x)= 4. Find the derivative of the function f(x)=√x−5/x^4 f '(x)= 5. Find the derivative of the function f(x)=2x−5/3x−3 f '(x)= 6. Find the derivative of the function g(x)=(x^4−5x^2+5x+4)(x^3−4x^2−1). You do not have to simplify your answer. g '(x)= 7. Let f(x)=(−x^2+x+3)^5 a. Find the derivative....
Let X be a random variable with density function f(x) = 1/4 for -3 <= x...
Let X be a random variable with density function f(x) = 1/4 for -3 <= x <= 5, and 0 otherwise. Find the density of Y = X^2 and of Y = (X - 1)^2, of Y = |X-1|, and of Y=(X-1)^4.
Let F ( x , y ) = 〈 e^x + y^2 − 3 , −...
Let F ( x , y ) = 〈 e^x + y^2 − 3 , − e ^(− y) + 2 x y + 4 y 〉. a) Determine if F ( x , y ) is a conservative vector field and, if so, find a potential function for it. b) Calculate ∫ C F ⋅ d r where C is the curve parameterized by r ( t ) = 〈 2 t , 4 t + sin ⁡ π...
f(x)=7e5x-4 1.Find out f(x) for (-5,-4,-1,0,1,3,5)   2. Find where it cuts the y-axis. 3.Find zero of...
f(x)=7e5x-4 1.Find out f(x) for (-5,-4,-1,0,1,3,5)   2. Find where it cuts the y-axis. 3.Find zero of function f(x) 4.Find where it cuts the x-axis. 5. Diffr. the function f´(x) 6. Find top and/or top for f(x) 7. Graph the function 8. Find an equation for the function with xk=2. y=hx+q
Let X=2N={x=(x1,x2,…):xi∈{0,1}} and define d(x,y)=2∑(i≥1)(3^−i)*|xi−yi|. Define f:X→[0,1] by f(x)=d(0,x), where 0=(0,0,0,…). Prove that maps X onto...
Let X=2N={x=(x1,x2,…):xi∈{0,1}} and define d(x,y)=2∑(i≥1)(3^−i)*|xi−yi|. Define f:X→[0,1] by f(x)=d(0,x), where 0=(0,0,0,…). Prove that maps X onto the Cantor set and satisfies (1/3)*d(x,y)≤|f(x)−f(y)|≤d(x,y) for x,y∈2N.
4. Let A = {1, 2, 3, 4, 5}. Let L = {(x, y) ∈ A...
4. Let A = {1, 2, 3, 4, 5}. Let L = {(x, y) ∈ A × A : x < y} and B = {(x, y) ∈ A × A : |x − y| = 1}. i. Draw graphs representing L and B. ii. Determine L ◦ B. iii. Determine B ◦ B. iv. Is B transitive? Explain.
Let f : R → R be defined by f(x) = x^3 + 3x, for all...
Let f : R → R be defined by f(x) = x^3 + 3x, for all x. (i) Prove that if y > 0, then there is a solution x to the equation f(x) = y, for some x > 0. Conclude that f(R) = R. (ii) Prove that the function f : R → R is strictly monotone. (iii) By (i)–(ii), denote the inverse function (f ^−1)' : R → R. Explain why the derivative of the inverse function,...
Let f(x, y) = x^2 ln(x^3 + y). (a) Find the gradient of f. (b) Find...
Let f(x, y) = x^2 ln(x^3 + y). (a) Find the gradient of f. (b) Find the direction in which the function decreases most rapidly at the point P(2, 1). (Give the direction as a unit vector.) (c) Find the directions of zero change of f at the point P(2, 1). (Give both directions as a unit vector.)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT