Question

Consider the following statement: if n is an integer, then 3 divides n3 + 2n. (a)...

Consider the following statement: if n is an integer, then 3 divides n3 + 2n.

(a) Prove the statement using cases.

(b) Prove the statement for all n ≥ 0 using induction.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Prove the following statement by mathematical induction. For every integer n ≥ 0, 2n <(n +...
Prove the following statement by mathematical induction. For every integer n ≥ 0, 2n <(n + 2)! Proof (by mathematical induction): Let P(n) be the inequality 2n < (n + 2)!. We will show that P(n) is true for every integer n ≥ 0. Show that P(0) is true: Before simplifying, the left-hand side of P(0) is _______ and the right-hand side is ______ . The fact that the statement is true can be deduced from that fact that 20...
For any odd integer n, show that 3 divides 2n+1. That is 2 to the nth...
For any odd integer n, show that 3 divides 2n+1. That is 2 to the nth power, not 2 times n
Let n be any integer, prove the following statement: n3+ 1 is even if and only...
Let n be any integer, prove the following statement: n3+ 1 is even if and only if n is odd.
Prove by mathematical induction: n3​ ​– 7n + 3 is divisible by 3, for each integer...
Prove by mathematical induction: n3​ ​– 7n + 3 is divisible by 3, for each integer n ≥ 1.
6. Consider the statment. Let n be an integer. n is odd if and only if...
6. Consider the statment. Let n be an integer. n is odd if and only if 5n + 7 is even. (a) Prove the forward implication of this statement. (b) Prove the backwards implication of this statement. 7. Prove the following statement. Let a,b, and c be integers. If a divides bc and gcd(a,b) = 1, then a divides c.
Find all natural numbers n so that    n3 + (n + 1)3 > (n +...
Find all natural numbers n so that    n3 + (n + 1)3 > (n + 2)3. Prove your result using induction.
Use Mathematical Induction to prove that 3 | (n^3 + 2n) for all integers n =...
Use Mathematical Induction to prove that 3 | (n^3 + 2n) for all integers n = 0, 1, 2, ....
Prove by induction that n3-n is a multiple of 3.
Prove by induction that n3-n is a multiple of 3.
Prove the following using induction: (a) For all natural numbers n>2, 2n>2n+1 (b) For all positive...
Prove the following using induction: (a) For all natural numbers n>2, 2n>2n+1 (b) For all positive integersn, 1^3+3^3+5^3+···+(2^n−1)^3=n^2(2n^2−1) (c) For all positive natural numbers n,5/4·8^n+3^(3n−1) is divisible by 19
Use Mathematical Induction to prove that for any odd integer n >= 1, 4 divides 3n+1.
Use Mathematical Induction to prove that for any odd integer n >= 1, 4 divides 3n+1.