Question

Let G be a group and define the center (of G) Z(G) = {a ∈ G...

Let G be a group and define the center (of G) Z(G) = {a ∈ G | xa = ax, ∀ x ∈ G}

a. Prove that Z(G) forms a subgroup of G.

b. If G is abelian, show that Z(G) = G.

c. What is the center of S3

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let G be a group and define the center Z9G) = {a ∈ G | xa...
Let G be a group and define the center Z9G) = {a ∈ G | xa = ax, ∀ x ∈ G}. a. Prove that Z(G) forms a subgroup of G. b. What is the center of Z7?
Let G be an Abelian group. Let k ∈ Z be nonzero. Define φ : G...
Let G be an Abelian group. Let k ∈ Z be nonzero. Define φ : G → G by φ(x) = x^ k . (a) Prove that φ is a group homomorphism. (b) Assume that G is finite and |G| is relatively prime to k. Prove that Ker φ = {e}.
Let G be an Abelian group and let H be a subgroup of G Define K...
Let G be an Abelian group and let H be a subgroup of G Define K = { g∈ G | g3 ∈ H }. Prove that K is a subgroup of G .
Let G be a group and let a ∈ G. The set CG(a) = {x ∈...
Let G be a group and let a ∈ G. The set CG(a) = {x ∈ G | xa = ax} of all elements that commute with a is called the Centralizer of a in G. (b) Compute CG(a) when G = S3and a = (1, 2). (c) Compute CG(a) when G = S4 and a = (1, 2). (d) Prove that Z(G) = ∩a∈GCG(a).
Let G be an abelian group, let H = {x in G | (x^3) = eg},...
Let G be an abelian group, let H = {x in G | (x^3) = eg}, where eg is the identity of G. Prove that H is a subgroup of G.
Let G be an Abelian group and H a subgroup of G. Prove that G/H is...
Let G be an Abelian group and H a subgroup of G. Prove that G/H is Abelian.
let g be a group. let h be a subgroup of g. define a~b. if ab^-1...
let g be a group. let h be a subgroup of g. define a~b. if ab^-1 is in h. prove ~ is an equivalence relation on g
: (a) Let p be a prime, and let G be a finite Abelian group. Show...
: (a) Let p be a prime, and let G be a finite Abelian group. Show that Gp = {x ∈ G | |x| is a power of p} is a subgroup of G. (For the identity, remember that 1 = p 0 is a power of p.) (b) Let p1, . . . , pn be pair-wise distinct primes, and let G be an Abelian group. Show that Gp1 , . . . , Gpn form direct sum in...
Let H be a normal subgroup of G. Assume the quotient group G/H is abelian. Prove...
Let H be a normal subgroup of G. Assume the quotient group G/H is abelian. Prove that, for any two elements x, y ∈ G, we have x^ (-1) y ^(-1)xy ∈ H
Let G be a finite Abelian group and let n be a positive divisor of|G|. Show...
Let G be a finite Abelian group and let n be a positive divisor of|G|. Show that G has a subgroup of order n.