Question

Find the general solution to the given differential equation. 1+(1+ty)e^ty+(1+t^2e^ty) dy/dt=0

Find the general solution to the given differential equation. 1+(1+ty)e^ty+(1+t^2e^ty) dy/dt=0

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
find the general solution of the differential equation dy/dt - 2y = t^2 * e^2t
find the general solution of the differential equation dy/dt - 2y = t^2 * e^2t
Find the general solution to the following: [(e^t)y-t(e^t)]dt+[1+(e^t)]dy=0
Find the general solution to the following: [(e^t)y-t(e^t)]dt+[1+(e^t)]dy=0
find the solution for the DE dy/dt +ty^3 +y/t = 0 answer explicitly if passible
find the solution for the DE dy/dt +ty^3 +y/t = 0 answer explicitly if passible
Find a general solution to the given equation for t<0 y"(t)-1/ty'(t)+5/t^2y(t)=0
Find a general solution to the given equation for t<0 y"(t)-1/ty'(t)+5/t^2y(t)=0
solve the given initial value problem. y(cos2t)e^ty - 2(sin2t)e^ty + 2t + (t(cos2t)e^ty - 3) dy/dt...
solve the given initial value problem. y(cos2t)e^ty - 2(sin2t)e^ty + 2t + (t(cos2t)e^ty - 3) dy/dt = 0, y(0)=0
Use variation of parameters to find a general solution to the differential equation given that the...
Use variation of parameters to find a general solution to the differential equation given that the functions y 1 and y 2 are linearly independent solutions to the corresponding homogeneous equation for t>0. ty"-(t+1)y'+y=30t^2 ; y1=e^t , y2=t+1 The general solution is y(t)= ?
Find the general solution. Explain and show all steps. [(e^t)y - t(e^t)] dt + [1 +...
Find the general solution. Explain and show all steps. [(e^t)y - t(e^t)] dt + [1 + (e^t)] dy = 0
Find the general solution of the equation. d^2y/dt^2-2t/(1+t^2)*dy/dt+{2/(1+t^2)}*y=1+t^2
Find the general solution of the equation. d^2y/dt^2-2t/(1+t^2)*dy/dt+{2/(1+t^2)}*y=1+t^2
Use variation of parameters to find a general solution to the differential equation given that the...
Use variation of parameters to find a general solution to the differential equation given that the functions y1 and y2 are linearly independent solutions to the corresponding homogeneous equation for t>0. y1=et y2=t+1 ty''-(t+1)y'+y=2t2
Consider the differential equation y′′+ 9y′= 0.( a) Let u=y′=dy/dt. Rewrite the differential equation as a...
Consider the differential equation y′′+ 9y′= 0.( a) Let u=y′=dy/dt. Rewrite the differential equation as a first-order differential equation in terms of the variables u. Solve the first-order differential equation for u (using either separation of variables or an integrating factor) and integrate u to find y. (b) Write out the auxiliary equation for the differential equation and use the methods of Section 4.2/4.3 to find the general solution. (c) Find the solution to the initial value problem y′′+ 9y′=...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT