Question

A mass of 1 kg stretches a spring 9.8 m. The mass is acted on by...

A mass of 1 kg stretches a spring 9.8 m. The mass is acted on by an external force of 4 cos(t) N. If the mass is set in motion from its equilibrium position with a downward velocity of 2 m/s, find the position of the mass at any time. Identify the transient (i.e., complementary) and steady state (i.e., particular) solutions. Does the motion exhibit resonance or a beat?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
3. A mass of 5 kg stretches a spring 10 cm. The mass is acted on...
3. A mass of 5 kg stretches a spring 10 cm. The mass is acted on by an external force of 10 sin(t/2) N (newtons) and moves in a medium that imparts a viscous force of 2 N when the speed of the mass is 4 cm/s. If the mass is set in motion from its equilibrium position with an initial velocity of 3 cm/s, formulate the initial value problem describing the motion of the mass. Then (a) Find the...
A mass of 8 kg stretches a spring 16 cm. The mass is acted on by...
A mass of 8 kg stretches a spring 16 cm. The mass is acted on by an external force of 7sin⁡(t/4)N and moves in a medium that imparts a viscous force of 3 N when the speed of the mass is 6 cm/s.If the mass is set in motion from its equilibrium position with an initial velocity of 4 cm/s, determine the position u of the mass at any time t. Use 9.8 m/s^2 as the acceleration due to gravity....
A mass weighing 19.6 N stretches a spring 9.8 cm. The mass is initially released from...
A mass weighing 19.6 N stretches a spring 9.8 cm. The mass is initially released from a point 2/3 meter above the equilibrium position with a downward velocity of 5 m/sec. (a) Find the equation of motion. (b)Assume that the entire spring-mass system is submerged in a liquid that imparts a damping force numerically equal to β (β > 0) times the instantaneous velocity. Determine the value of β so that the subsequent motion is overdamped.
A mass of 3 kg stretches a spring 61.25 cm. Supposing that there is no damping...
A mass of 3 kg stretches a spring 61.25 cm. Supposing that there is no damping and that the mass is set in motion from 0.5 m above its equilibrium position with a downward velocity of 2 m/s, determine the position of the mass at any time. Find the amplitude, the frequency, the period and the phase shift of the motion.
A mass of 100 g stretches a spring 5 cm. If the mass is set in...
A mass of 100 g stretches a spring 5 cm. If the mass is set in motion from its equilibrium position with a downward velocity of 10 cm/s, and if there is no damping, determine the position u of the mass at any time t. (Use g = 9.8 m/s2  for the acceleration due to gravity. Let u(t), measured positive downward, denote the displacement in meters of the mass from its equilibrium position at time t seconds.) u(t) = When does...
A mass of 50 g stretches a spring 1.568 cm. If the mass is set in...
A mass of 50 g stretches a spring 1.568 cm. If the mass is set in motion from its equilibrium position with a downward velocity of 40 cm/s, and if there is no damping, determine the position u of the mass at any time t. Enclose arguments of functions in parentheses. For example, sin(2x). Assume g=9.8 ms2. Enter an exact answer. u(t)=?
A force of 720 newtons stretches a spring 4 meters. A mass of 5 kg is...
A force of 720 newtons stretches a spring 4 meters. A mass of 5 kg is attached to the end of the spring and is released from a position .5 meters below the equilibrium position with a downward velocity of 8 meters per second. What is the equation of motion? Please solve using Differential equations
A mass of 1kg stretches a spring by 32cm. The damping constant is c=0. Exterbal vibrations...
A mass of 1kg stretches a spring by 32cm. The damping constant is c=0. Exterbal vibrations create a force of F(t)= 4 sin 3t Netwons, setting the spring in motion from its equilibrium position with zero velocity. What is the coefficient of sin 3t of the steady-state solution? Use g=9.8 m/s^2. Express your answe is two decimal places.
DIFFERENTIAL EQUATIONS 1. A force of 400 newtons stretches a spring 2 meters. A mass of...
DIFFERENTIAL EQUATIONS 1. A force of 400 newtons stretches a spring 2 meters. A mass of 50 kilograms is attached to the end of the spring and is initially released from the equilibrium position with an upward velocity of 10 m/s. Find the equation of motion. 2. A 4-foot spring measures 8 feet long after a mass weighing 8 pounds is attached to it. The medium through which the mass moves offers a damping force numerically equal to times the...
A mass of 100 g stretches a spring 1.568 cm. If the mass is set in...
A mass of 100 g stretches a spring 1.568 cm. If the mass is set in motion from its equilibrium position with a downward velocity of 40 cms, and if there is no damping, determine the position u of the mass at any time t. Enclose arguments of functions in parentheses. For example, sin(2x).
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT