Question

Consider the driven damped harmonic oscillator m(d^2x/dt^2)+b(dx/dt)+kx = F(t) with driving force F(t) = FoSin(wt). Consider...

Consider the driven damped harmonic oscillator

m(d^2x/dt^2)+b(dx/dt)+kx = F(t)

with driving force F(t) = FoSin(wt).
Consider the overdamped case

(b/2m)^2 < k/m

a. Find the steady state solution.

b. Find the solution with initial conditions x(0)=0, x'(0)=0.

c. Use a plotting program to plot your solution for m=1, k=0.1, b=1, Fo=0.25, and w=0.5.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Python: We want to find the position, as a function of time, of a damped harmonic...
Python: We want to find the position, as a function of time, of a damped harmonic oscillator. The equation of motion is              m d2x/dt2 = -kx – b dx/dt,      x(0) = 0.5, dx/dt (0) = 0 Take m = 0.25 kg, k = 100 N/m, and b = 0.1 N.s/m. Solve x(t) for t in the interval [0, 10T], where T = 2π/ω, and ω2 = k/m. please write the code. Divide the interval into N = 104 intervals:...
Consider the second order differential equation d2/dt^2 x + 6 dx/dt + 10x = 0. Classify...
Consider the second order differential equation d2/dt^2 x + 6 dx/dt + 10x = 0. Classify the harmonic oscillator (undamped, underdamped, critically damped, over damped). Justify your answer.
A sinusoidally carrying driving force is applied to a damped harmonic oscillator of force constant k...
A sinusoidally carrying driving force is applied to a damped harmonic oscillator of force constant k and mass m. If the damping constant has a value b1, the amplitude is A1 when the driving angular frequency equals ?(k/m) . In terms of A1, what is the amplitude for the same driving frequency and the same driving force amplitude Fmax, if the damping constant is (a)3b1 and (b)b1/2? The oscillator is now at the resonace condition. If the damping constant b...
A damped harmonic oscillator of mass m has a natural frequency ω0, and it is tuned...
A damped harmonic oscillator of mass m has a natural frequency ω0, and it is tuned so that β = ω0. a) At t = 0, its position is x0 and its velocity is v0. Find x(t) for t > 0 b)If x0 = 0.2 m and ω0 = 3 s−1 , obtain a condition on v0 necessary for the oscillator to pass through the equilibrium position (x(t) = 0) at a finite time t.
The position x(t), of a damped oscillator with forcing satisfies the ordinary differential equation , i)...
The position x(t), of a damped oscillator with forcing satisfies the ordinary differential equation , i) where f(t) denotes the forcing on the oscillator. (i) If x(0) = 0, dx dt (0) = 1, f(t) = 4t and the Laplace transform of x(t) is denoted X(s) = L[x(t)], then show that X(s) = 1 /(s + 2)^2 + 4 /s^2 (s + 2)^2 ii) Hence find x(t)
Please Calculate to give actual numbers!! Consider a damped harmonic oscillator. The oscillating mass, m, is...
Please Calculate to give actual numbers!! Consider a damped harmonic oscillator. The oscillating mass, m, is 4 kg, the spring constant, k, 16 N/m, and the damping force F is proportional to the velocity (F = -m*alpha*v). If the initial amplitude is 20 cm and falls to half after 6 complete oscilltions, calculate a. the damping cooefficient, alpha, b. the energy "lost" during the first 6 oscilations
Consider the initial value problem mx′′+cx′+kx=F(t),   x(0)=0,   x′(0)=0 modeling the motion of a damped mass-spring system initially at...
Consider the initial value problem mx′′+cx′+kx=F(t),   x(0)=0,   x′(0)=0 modeling the motion of a damped mass-spring system initially at rest and subjected to an applied force F(t), where the unit of force is the Newton (N). Assume that m=2 kilograms, c=8 kilograms per second, k=80 Newtons per meter, and F(t)=30e−t Newtons. Solve the initial value problem. x(t)= Determine the long-term behavior of the system (steady periodic solution). Is limt→∞x(t)=0? If it is, enter zero. If not, enter a function that approximates x(t) for...
Consider the initial value problem mx′′+cx′+kx=F(t),   x(0)=0,   x′(0)=0 modeling the motion of a damped mass-spring system initially at...
Consider the initial value problem mx′′+cx′+kx=F(t),   x(0)=0,   x′(0)=0 modeling the motion of a damped mass-spring system initially at rest and subjected to an applied force F(t), where the unit of force is the Newton (N). Assume that m=2 kilograms, c=8 kilograms per second, k=80 Newtons per meter, and F(t)=20e−t Newtons. Solve the initial value problem. x(t)= help (formulas) Determine the long-term behavior of the system (steady periodic solution). Is limt→∞x(t)=0? If it is, enter zero. If not, enter a function that approximates...
Consider the initial value problem mx′′+cx′+kx=F(t),   x(0)=0,   x′(0)=0 modeling the motion of a damped mass-spring system initially at...
Consider the initial value problem mx′′+cx′+kx=F(t),   x(0)=0,   x′(0)=0 modeling the motion of a damped mass-spring system initially at rest and subjected to an applied force F(t), where the unit of force is the Newton (N). Assume that m=2 kilograms, c=8 kilograms per second, k=80 Newtons per meter, and F(t)=60cos(8t) Newtons. Solve the initial value problem. x(t)= Determine the long-term behavior of the system (steady periodic solution). Is limt→∞x(t)=0? If it is, enter zero. If not, enter a function that approximates x(t) for...
Consider the following linear system (with real eigenvalue) dx/dt=-2x+7y dy/dt=x+4y find the specific solution coresponding to...
Consider the following linear system (with real eigenvalue) dx/dt=-2x+7y dy/dt=x+4y find the specific solution coresponding to the initial values (x(0),y(0))=(-5,3)