Question

Let U, V be a pair of subspaces of Rn and U +V the summationspace. Suppose...

Let U, V be a pair of subspaces of Rn and U +V the summationspace. Suppose that U ∩ V = {0}. Prove that from every vector U + V can be written as the sum of a vector from U and a vector from V.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let U and W be subspaces of a nite dimensional vector space V such that U...
Let U and W be subspaces of a nite dimensional vector space V such that U ∩ W = {~0}. Dene their sum U + W := {u + w | u ∈ U, w ∈ W}. (1) Prove that U + W is a subspace of V . (2) Let U = {u1, . . . , ur} and W = {w1, . . . , ws} be bases of U and W respectively. Prove that U ∪ W...
Let U and V be subspaces of the vector space W . Recall that U ∩...
Let U and V be subspaces of the vector space W . Recall that U ∩ V is the set of all vectors ⃗v in W that are in both of U or V , and that U ∪ V is the set of all vectors ⃗v in W that are in at least one of U or V i: Prove: U ∩V is a subspace of W. ii: Consider the statement: “U ∪ V is a subspace of W...
Suppose U and W are subspaces of V. Prove that U+W is a subspace of V.
Suppose U and W are subspaces of V. Prove that U+W is a subspace of V.
Let U and W be subspaces of V, let u1,...,um be a basis of U, and...
Let U and W be subspaces of V, let u1,...,um be a basis of U, and let w1,....,wn be a basis of W. Show that if u1,...,um,w1,...,wn is a basis of U+W then U+W=U ⊕ W is a direct sum
Let S, U, and W be subspaces of a vector space V, where U ⊆ W....
Let S, U, and W be subspaces of a vector space V, where U ⊆ W. Show that U + (W ∩ S) = W ∩ (U + S)
Let U and W be subspaces of a finite dimensional vector space V such that V=U⊕W....
Let U and W be subspaces of a finite dimensional vector space V such that V=U⊕W. For any x∈V write x=u+w where u∈U and w∈W. Let R:U→U and S:W→W be linear transformations and define T:V→V by Tx=Ru+Sw . Show that detT=detRdetS .
Let E be an n×n matrix, and letU= {xE:x∈Rn} (where x∈Rn is written as arow vector)....
Let E be an n×n matrix, and letU= {xE:x∈Rn} (where x∈Rn is written as arow vector). Show that the following are equivalent. (a) E^2 = E = E^T (T means transpose). (b) (u − uE) · (vE) = 0 for all u, v ∈ Rn. (c) projU(v) = vE for all v ∈ Rn.
Let V be an n-dimensional vector space. Let W and W2 be unequal subspaces of V,...
Let V be an n-dimensional vector space. Let W and W2 be unequal subspaces of V, each of dimension n - 1. Prove that V =W1 + W2 and dim(Win W2) = n - 2.
Let x be a vector in Rn written as a column, and define U = {Ax:A∈Mmn}....
Let x be a vector in Rn written as a column, and define U = {Ax:A∈Mmn}. Show that U is a subspace of Rm.
Suppose that V is a vector space and R and S are both subspaces of V...
Suppose that V is a vector space and R and S are both subspaces of V such that R ⊆ S. Prove that dim(R) ≤ dim(S). Give an example of V , R and S such that dim(R) < dim(S).
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT