Question

Show that the function f(z) =x^3-3xy^2+i((3x^2y-y^3) is differentiable

Show that the function f(z) =x^3-3xy^2+i((3x^2y-y^3) is differentiable

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The real part of a f (z) complex function is given as (x,y)=y^3-3x^2y. Show the harmonic...
The real part of a f (z) complex function is given as (x,y)=y^3-3x^2y. Show the harmonic function u(x,y) and find the expressions v(x,y) and f(z). Calculate f'(1+2i) and write x+iy algebraically.
Let f(x,y) = 3x^2y − 2y^2 − 3x^2 − 8y + 2. (i) Find the stationary...
Let f(x,y) = 3x^2y − 2y^2 − 3x^2 − 8y + 2. (i) Find the stationary points of f. (ii) For each stationary point P found in (i), determine whether f has a local maximum, a local minimum, or a saddle point at P. Answer: (i) (0, −2), (2, 1), (−2, 1) (ii) (0, −2) loc. max, (± 2, 1) saddle points
x^3y''' - x^2y'' - 3xy' =3x
x^3y''' - x^2y'' - 3xy' =3x
find the total differential (a) f(x,y)=x^2+3xy+2y (b) f(x,y)=x-y/x+1
find the total differential (a) f(x,y)=x^2+3xy+2y (b) f(x,y)=x-y/x+1
Find the maximum and minimum values of the function f(x,y,z)=3x−y−3 subject to the constraints x^2+2z^2=324 and...
Find the maximum and minimum values of the function f(x,y,z)=3x−y−3 subject to the constraints x^2+2z^2=324 and x+y−z=−6 . Maximum value is , occuring at ( , , ). Minimum value is , occuring at ( , , ).
F(x, y, z) =< 3xy^2 , xe^z , z^3 >, S is the solid bounded by...
F(x, y, z) =< 3xy^2 , xe^z , z^3 >, S is the solid bounded by the cylinder y2 + z2 = 1 and the planes x = −1 and x = 2 Find he surface area using surface integrals. DO NOT USE Divergence Theorem. Answer: 9π/2
Find the maximum and minimum values of the function f(x,y,z)=x+2y subject to the constraints y^2+z^2=100 and...
Find the maximum and minimum values of the function f(x,y,z)=x+2y subject to the constraints y^2+z^2=100 and x+y+z=5. I have: The maximum value is ____, occurring at (___, 5sqrt2, -5sqrt2). The minimum value is ____, occurring at (___, -5sqrt2, 5sqrt2). The x-value of both of these is NOT 1. The maximum and minimum are NOT 1+10sqrt2 and 1-10sqrt2, or my homework program is wrong.
Consider the function g(x) = |3x + 4|. (a) Is the function differentiable at x =...
Consider the function g(x) = |3x + 4|. (a) Is the function differentiable at x = 10? Find out using ARCs. If it is not differentiable there, you do not have to do anything else. If it is differentiable, write down the equation of the tangent line thru (10, g(10)). (b) Graph the function. Can you spot a point “a” such that the tangent line through (a, f(a)) does not exist? If yes, show using ARCS that g(x) is not...
Use Gaussian Elimination to solve and show all steps: 1. (x+4y=6) (1/2x+1/3y=1/2) 2. (x-2y+3z=7) (-3x+y+2z=-5) (2x+2y+z=3)
Use Gaussian Elimination to solve and show all steps: 1. (x+4y=6) (1/2x+1/3y=1/2) 2. (x-2y+3z=7) (-3x+y+2z=-5) (2x+2y+z=3)
1. Let T(x, y, z) = (x + z, y − 2x, −z + 2y) and...
1. Let T(x, y, z) = (x + z, y − 2x, −z + 2y) and S(x, y, z) = (2y − z, x − z, y + 3x). Use matrices to find the composition S ◦ T. 2. Find an equation of the tangent plane to the graph of x 2 − y 2 − 3z 2 = 5 at (6, 2, 3). 3. Find the critical points of f(x, y) = (x 2 + y 2 )e −y...