Question

Given A is a mxn matrix with dim(N(A)) if u=(α(1), α(2),..., α(n))^T ∈N(A). Prove that α(1)a(1)+α(2)a(2)+...+α(n)a(n)=0,...

Given A is a mxn matrix with dim(N(A)) if u=(α(1), α(2),..., α(n))^T ∈N(A). Prove that α(1)a(1)+α(2)a(2)+...+α(n)a(n)=0, where a(1), a(2),..., a(n) are columns of A.

Now suppose that B is the matrix obtained from A by performing row operations: Show that α(1)b(1)+α(2)b(2)+...+α(n)b(n)=0, where b(1), b(2),..., b(n) are columns of B.

Show that the converse is also true.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1.Let A be an n x n matrix. Which of these conditions show that A is...
1.Let A be an n x n matrix. Which of these conditions show that A is invertible? •det A= 0 • dim (NulA) = 1 •ColA=R^n •A^T is invertible •an n x n matrix, D, exists where AD=In
n×n-matrix M is symmetric if M = M^t. Matrix M is anti-symmetric if M^t = -M....
n×n-matrix M is symmetric if M = M^t. Matrix M is anti-symmetric if M^t = -M. 1. Show that the diagonal of an anti-symmetric matrix are zero 2. suppose that A,B are symmetric n × n-matrices. Prove that AB is symmetric if AB = BA. 3. Let A be any n×n-matrix. Prove that A+A^t is symmetric and A - A^t antisymmetric. 4. Prove that every n × n-matrix can be written as the sum of a symmetric and anti-symmetric matrix.
Suppose V is a vector space over F, dim V = n, let T be a...
Suppose V is a vector space over F, dim V = n, let T be a linear transformation on V. 1. If T has an irreducible characterisctic polynomial over F, prove that {0} and V are the only T-invariant subspaces of V. 2. If the characteristic polynomial of T = g(t) h(t) for some polynomials g(t) and h(t) of degree < n , prove that V has a T-invariant subspace W such that 0 < dim W < n
Exercise1.2.1: Prove that if t > 0 (t∈R), then there exists an n∈N such that 1/n^2...
Exercise1.2.1: Prove that if t > 0 (t∈R), then there exists an n∈N such that 1/n^2 < t. Exercise1.2.2: Prove that if t ≥ 0(t∈R), then there exists an n∈N such that n−1≤ t < n. Exercise1.2.8: Show that for any two real numbers x and y such that x < y, there exists an irrational number s such that x < s < y. Hint: Apply the density of Q to x/(√2) and y/(√2).
Given that A and B are n × n matrices and T is a linear transformation....
Given that A and B are n × n matrices and T is a linear transformation. Determine which of the following is FALSE. (a) If AB is not invertible, then either A or B is not invertible. (b) If Au = Av and u and v are 2 distinct vectors, then A is not invertible. (c) If A or B is not invertible, then AB is not invertible. (d) If T is invertible and T(u) = T(v), then u =...
5. (a) Prove that det(AAT ) = (det(A))2. (b) Suppose that A is an n×n matrix...
5. (a) Prove that det(AAT ) = (det(A))2. (b) Suppose that A is an n×n matrix such that AT = −A. (Such an A is called a skew- symmetric matrix.) If n is odd, prove that det(A) = 0.
4. Suppose that we have a linear system given in matrix form as Ax = b,...
4. Suppose that we have a linear system given in matrix form as Ax = b, where A is an m×n matrix, b is an m×1 column vector, and x is an n×1 column vector. Suppose also that the n × 1 vector u is a solution to this linear system. Answer parts a. and b. below. a. Suppose that the n × 1 vector h is a solution to the homogeneous linear system Ax=0. Showthenthatthevectory=u+hisasolutiontoAx=b. b. Now, suppose that...
a)Assume that you are given a matrix A = [aij ] ∈ R n×n with (1...
a)Assume that you are given a matrix A = [aij ] ∈ R n×n with (1 ≤ i, j ≤ n) and having the following interesting property: ai1 + ai2 + ..... + ain = 0 for each i = 1, 2, ...., n Based on this information, prove that rank(A) < n. b) Let A ∈ R m×n be a matrix of rank r. Suppose there are right hand sides b for which Ax = b has no solution,...
Given T(n)= T(n-1) + 2*n, using the substitution method prove that its big O for T(n)...
Given T(n)= T(n-1) + 2*n, using the substitution method prove that its big O for T(n) is O(n^2). 1. You must provide full proof. 2. Determine the value or the range of C.
Let A be an n×n matrix, I be n×n identity matrix. Define Lij =I+Mij, (1) i...
Let A be an n×n matrix, I be n×n identity matrix. Define Lij =I+Mij, (1) i > j, where the only non-zero element of Mij is mij on i-th row, j-th column. 1. Calculate LijA. What is the relationship between LijA and A? 2. Calculate L−1. ij 3. Suppose now we have a series of nonzero real numbers mi+1,i, mi+2,i, · · · , mn,i. Define Li+1,i , Li+2,i , · · · , Ln,i in the fashion of equation...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT