Question

How to prove below? If A is an open set and f is differentiable at Xo...

How to prove below?

If A is an open set and f is differentiable at Xo which is included at A, the Df(Xo) is unique.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
if the function f is differentiable at a, prove the function f is also continuous at...
if the function f is differentiable at a, prove the function f is also continuous at a.
Prove or give a counterexample: If f is continuous on R and differentiable on R∖{0} with...
Prove or give a counterexample: If f is continuous on R and differentiable on R∖{0} with limx→0 f′(x) = L, then f is differentiable on R.
Prove that the function f(x) = |x| is not differentiable at zero, and show that the...
Prove that the function f(x) = |x| is not differentiable at zero, and show that the function g(x) = |x|*x is differentiable at zero.
Prove that if f is differentiable and monotonically increasing on D , then f′(x) ≥ 0...
Prove that if f is differentiable and monotonically increasing on D , then f′(x) ≥ 0 for all x ∈ D.
Prove or give a counter example: If f is continuous on R and differentiable on R...
Prove or give a counter example: If f is continuous on R and differentiable on R ∖ { 0 } with lim x → 0 f ′ ( x ) = L , then f is differentiable on R .
Let I be an interval. Prove that if f is differentiable on I and if the...
Let I be an interval. Prove that if f is differentiable on I and if the derrivative f' be bounded on I then f uniformly continued on I!
Suppose f is differentiable on a bounded interval (a,b) but f is unbounded there. Prove that...
Suppose f is differentiable on a bounded interval (a,b) but f is unbounded there. Prove that f' is also unbounded in (a,b). Is the converse true?
If f, g are differentiable at a, then prove the sum and product rules for derivatives.
If f, g are differentiable at a, then prove the sum and product rules for derivatives.
Let f : R → R be differentiable with derivative f'. Prove that f(x + h)...
Let f : R → R be differentiable with derivative f'. Prove that f(x + h) = f(x) + f'(x)h + o(h), as h → 0.
Prove that a function f(z) which is complex differentiable at a point z0 satisfies the Cauchy-Riemann...
Prove that a function f(z) which is complex differentiable at a point z0 satisfies the Cauchy-Riemann equations at that point.