Question

An object of mass one unit is hanging from a spring. Initially it is held still...

An object of mass one unit is hanging from a spring. Initially it is held still at 1/2 unit of length below its equilibrium position. It is then released. Using a restoring force given by k=16, find x(t) where x(t) gives the position of the weight at time t. Assuming no damping or external force on the spring. (the second sentence gives Xo and Vo for the initial conditions X(0)= Xo, X'(0)=Vo

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An object of mass one unit is hanging from a spring. Initially it is held still...
An object of mass one unit is hanging from a spring. Initially it is held still at 1/2 unit of length below its equilibrium position. It is then released. Using a restoring force given by k=16 and a damping constant c=8 find x(t), where x(t) gives the position of the weight at time t, sketch the graph of the function (Simple Harmonic motion)
A mass weighing 32 lb is attached to a spring hanging from the ceiling and comes...
A mass weighing 32 lb is attached to a spring hanging from the ceiling and comes to rest at its equilibrium position. At time t=0, an external force of F(t) = 3cos(2t) lb is applied to the system. If the spring constant is 10lb/ft and the damping constant is 4 lb-sec/ft, find the steady state solution for the system. Use g = 32 ft / sec^2
A mass weighing 96 lb is attached to a spring hanging from the ceiling and comes...
A mass weighing 96 lb is attached to a spring hanging from the ceiling and comes to rest at its equilibrium position. At time t=​0, an external force of F(t) = 3cos(4t) lb is applied to the system. If the spring constant is 10 lb/ft and the damping constant is 3 lb-sec/ft, find the​ steady-state solution for the system. Use g=32 ft/sec^2
A 10 kilogram object suspended from the end of a vertically hanging spring stretches the spring...
A 10 kilogram object suspended from the end of a vertically hanging spring stretches the spring 9.8 centimeters. At time t=0, the resulting mass-spring system is disturbed from its rest state by the force F(t)=150cos(8t). The force F(t) is expressed in Newtons and is positive in the downward direction, and time is measured in seconds. Determine the spring constant k. k= Formulate the initial value problem for y(t), where y(t) is the displacement of the object from its equilibrium rest...
A mass weighing 8 lb is attached to a spring hanging from the ceiling, and comes...
A mass weighing 8 lb is attached to a spring hanging from the ceiling, and comes to rest at its equilibrium position. The spring constant is 9 lb/ft and there is no damping. A. How far (in feet) does the mass stretch the spring from its natural length? L=________ (do not include units). B. What is the resonance frequency for the system? ?0= _________(do not include units). C. At time t=0 seconds, an external force F(t)=2cos(?0t) is applied to the...
A mass weighing 16 pounds stretches a spring 8/3 feet. The mass is initially released from...
A mass weighing 16 pounds stretches a spring 8/3 feet. The mass is initially released from rest from a point 3 feet below the equilibrium position, and the subsequent motion takes place in a medium that offers a damping force that is numerically equal to 1/2 the instantaneous velocity. Find the equation of motion x(t) if the mass is driven by an external force equal to f(t) = 10 cos(3t). (Use g = 32 ft/s^2 for the acceleration due to...
An object has a mass of 2 Kg. It is attached to a spring that has...
An object has a mass of 2 Kg. It is attached to a spring that has a constant of K=10 N/m and also a damping force of 4 times the velocity. The object begins at 1 m below equilibrium and has a beginning velocity of 1 m/s toward equilibrium( upward) . Solve for the position x(t). Is the spring overdamped, underdamped or critically damped?
A mass weighing 16 pounds stretches a spring 8 3 feet. The mass is initially released...
A mass weighing 16 pounds stretches a spring 8 3 feet. The mass is initially released from rest from a point 3 feet below the equilibrium position, and the subsequent motion takes place in a medium that offers a damping force that is numerically equal to 1 2 the instantaneous velocity. Find the equation of motion x(t) if the mass is driven by an external force equal to f(t) = 20 cos(3t). (Use g = 32 ft/s2 for the acceleration...
A mass weighing 16 pounds stretches a spring 8 3 feet. The mass is initially released...
A mass weighing 16 pounds stretches a spring 8 3 feet. The mass is initially released from rest from a point 3 feet below the equilibrium position, and the subsequent motion takes place in a medium that offers a damping force that is numerically equal to 1 2 the instantaneous velocity. Find the equation of motion x(t) if the mass is driven by an external force equal to f(t) = 10 cos(3t). (Use g = 32 ft/s2 for the acceleration...
A mass m is attached to a spring with stiffness k=25 N/m. The mass is stretched...
A mass m is attached to a spring with stiffness k=25 N/m. The mass is stretched 1 m to the left of the equilibrium point then released with initial velocity 0. Assume that m = 3 kg, the damping force is negligible, and there is no external force. Find the position of the mass at any time along with the frequency, amplitude, and phase angle of the motion. Suppose that the spring is immersed in a fluid with damping constant...