Question

Let n be in N and let K be a field. Show that for a linear...

Let n be in N and let K be a field. Show that for a linear map T : Kn to Kn the following statements are equivalent:

1. The map T is one-to-one (injective).

2. The map T is onto (surjective).

3. The map T is invertible.

4. The map T is an isomorphism.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Problem 3. Recall that a linear map f : V → W is called an isomorphism...
Problem 3. Recall that a linear map f : V → W is called an isomorphism if it is invertible (i.e. has a linear inverse map). We proved in class that f is in fact invertible if and only if it is bijective. Use this fact from class together with the Rank-Nullity Theorem (of the previous problem) to show that if f : V → V is an endomorphism, then it is actually invertible if 1. it is merely injective...
a. Let T : V → W be left invertible. Show that T is injective. b....
a. Let T : V → W be left invertible. Show that T is injective. b. Let T : V → W be right invertible. Show that T is surjective
True or False? No reasons needed. (e) Suppose β and γ are bases of F n...
True or False? No reasons needed. (e) Suppose β and γ are bases of F n and F m, respectively. Every m × n matrix A is equal to [T] γ β for some linear transformation T: F n → F m. (f) Recall that P(R) is the vector space of all polynomials with coefficients in R. If a linear transformation T: P(R) → P(R) is one-to-one, then T is also onto. (g) The vector spaces R 5 and P4(R)...
Let A be an n by n matrix, with real valued entries. Suppose that A is...
Let A be an n by n matrix, with real valued entries. Suppose that A is NOT invertible. Which of the following statements are true? ?Select ALL correct answers.? The columns of A are linearly dependent. The linear transformation given by A is one-to-one. The columns of A span Rn. The linear transformation given by A is onto Rn. There is no n by n matrix D such that AD=In. None of the above.
Let p(x) be an irreducible polynomial of degree n over a finite field K. Show that...
Let p(x) be an irreducible polynomial of degree n over a finite field K. Show that its Galois group over K is cyclic of order n and then show how the Galois group of x3 − 1 over Q is cyclic of order 2.
(Linear Algebra) A n×n-matrix is nilpotent if there is a "r" such that Ar is the...
(Linear Algebra) A n×n-matrix is nilpotent if there is a "r" such that Ar is the nulmatrix. 1. show an example of a non-trivial, nilpotent 2×2-matrix 2.let A be an invertible n×n-matrix. show that A is not nilpotent.
n x n matrix A, where n >= 3. Select 3 statements from the invertible matrix...
n x n matrix A, where n >= 3. Select 3 statements from the invertible matrix theorem below and show that all 3 statements are true or false. Make sure to clearly explain and justify your work. A= -1 , 7, 9 7 , 7, 10 -3, -6, -4 The equation A has only the trivial solution. 5. The columns of A form a linearly independent set. 6. The linear transformation x → Ax is one-to-one. 7. The equation Ax...
Given that A and B are n × n matrices and T is a linear transformation....
Given that A and B are n × n matrices and T is a linear transformation. Determine which of the following is FALSE. (a) If AB is not invertible, then either A or B is not invertible. (b) If Au = Av and u and v are 2 distinct vectors, then A is not invertible. (c) If A or B is not invertible, then AB is not invertible. (d) If T is invertible and T(u) = T(v), then u =...
1. Let V and W be finite-dimensional vector spaces over field F with dim(V) = n...
1. Let V and W be finite-dimensional vector spaces over field F with dim(V) = n and dim(W) = m, and let φ : V → W be a linear transformation. A) If m = n and ker(φ) = (0), what is im(φ)? B) If ker(φ) = V, what is im(φ)? C) If φ is surjective, what is im(φ)? D) If φ is surjective, what is dim(ker(φ))? E) If m = n and φ is surjective, what is ker(φ)? F)...
Let V and W be vector spaces and let T:V→W be a linear transformation. We say...
Let V and W be vector spaces and let T:V→W be a linear transformation. We say a linear transformation S:W→V is a left inverse of T if ST=Iv, where ?v denotes the identity transformation on V. We say a linear transformation S:W→V is a right inverse of ? if ??=?w, where ?w denotes the identity transformation on W. Finally, we say a linear transformation S:W→V is an inverse of ? if it is both a left and right inverse of...