Question

Given an undirected graph, design an algorithm to check if there exists a cycle that contains...

Given an undirected graph, design an algorithm to check if there exists a cycle that contains a given vertex v. Analyze its time complexity.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Given a directed acyclic graph G= (V,E), vertex s∈V, design a dynamic programming algorithm to compute...
Given a directed acyclic graph G= (V,E), vertex s∈V, design a dynamic programming algorithm to compute the number of distinct paths from s to v for any v∈V. 1. Define subproblems 2. Write recursion 3. Give the pseudo-code 4. Analyze the running time.
Draw an undirected graph with 6 vertices that has an Eulerian Cycle and a Hamiltonian Cycle.  The...
Draw an undirected graph with 6 vertices that has an Eulerian Cycle and a Hamiltonian Cycle.  The degree of each vertex must be greater than 2.  List the degrees of the vertices, draw the Hamiltonian Cycle on the graph and give the vertex list of the Eulerian Cycle. Draw a Bipartite Graph with 10 vertices that has an Eulerian Path and a Hamiltonian Cycle.  The degree of each vertex must be greater than 2.  List the degrees of the vertices, draw the Hamiltonian Cycle...
State the sufficient and necessary condition for an undirected graph to have an Euler cycle. Prove...
State the sufficient and necessary condition for an undirected graph to have an Euler cycle. Prove that if an undirected graph has an Euler cycle then all vertex degrees are even. Show all steps and draw a diagram it will help me understand the problem. Thanks
Design an algorithm that for a given DAG G = (V, E) checks/recognizes if G is...
Design an algorithm that for a given DAG G = (V, E) checks/recognizes if G is semi-connected in time O(|V | + |E|). A directed graph G = (V, E) is called semi-connected if and only if for every two vertices u, v ∈ V there is a directed path from u to v or from v to u
Analyze the worst-case complexity of the algorithm below when using an optimized adjacency list to store...
Analyze the worst-case complexity of the algorithm below when using an optimized adjacency list to store G. ComponentCount: Input: G = (V, E): an undirected graph with n vertices and m edges Input: n, m: the order and size of G, respectively Output: the number of connected components in G Pseudocode: comp = n uf = UnionFind(n) For v in V:     For u in N(v):         If (uf.Find(v) != uf.Find(u))             uf.Union(u, v)             comp = comp - 1...
Analyze the worst-case complexity of the algorithm below when using an optimized adjacency list to store...
Analyze the worst-case complexity of the algorithm below when using an optimized adjacency list to store G. ComponentCount: Input: G = (V, E): an undirected graph with n vertices and m edges Input: n, m: the order and size of G, respectively Output: the number of connected components in G Pseudocode: comp = n uf = UnionFind(n) For v in V:     For u in N(v):         If (uf.Find(v) != uf.Find(u))             uf.Union(u, v)             comp = comp - 1...
Clique: A graph clique of size k is a subset of k nodes that are all...
Clique: A graph clique of size k is a subset of k nodes that are all connected to each other (complete subgraph of size k). Design an exhaustive-search algorithm in PSEUDOCODE that takes as input a graph G, an integer k and check if a clique of size k exists in G. ANALYZE the runtime of your algorithm.
You are given a directed acyclic graph G(V,E), where each vertex v that has in-degree 0...
You are given a directed acyclic graph G(V,E), where each vertex v that has in-degree 0 has a value value(v) associated with it. For every other vertex u in V, define Pred(u) to be the set of vertices that have incoming edges to u. We now define value(u) = ?v∈P red(u) value(v). Design an O(n + m) time algorithm to compute value(u) for all vertices u where n denotes the number of vertices and m denotes the number of edges...
we consider a graph G= (V, E), with n=|V| and m=|E|. Describe an O(n+m) time algorithm...
we consider a graph G= (V, E), with n=|V| and m=|E|. Describe an O(n+m) time algorithm to find such a vertex w. Hint: a depth-first search from u might be helpful.
Suppose that H is a connected graph that contains a proper cycle. Let H′ represent the...
Suppose that H is a connected graph that contains a proper cycle. Let H′ represent the subgraph of H that results by removing a single edge from H, where the edge removed is part of the proper cycle that H contains. Argue that H′ remains connected. Notes. Your argument here needs to be (slightly) different from your argument in Activity 16.3. Make sure you are using the technical definition of connected graph in your argument. What are you assuming about...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT