Question

Let W be the plane in R3 with equation 5x - 3y +z =0 Find the...

Let W be the plane in R3 with equation 5x - 3y +z =0

Find the standard matrix for the orthogonal projection onto W

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the linear transformation P : R3 → R3 given by orthogonal projection onto the plane...
Consider the linear transformation P : R3 → R3 given by orthogonal projection onto the plane 3x − y − 2z = 0, using the dot product on R3 as inner product. Describe the eigenspaces and eigenvalues of P, giving specific reasons for your answers. (Hint: you do not need to find a matrix representing the transformation.)
Let P be the plane given by 3x +4y +5z = 0, and let T :...
Let P be the plane given by 3x +4y +5z = 0, and let T : R3 →R3 be projection onto P. (a) Find range(T) and rank(T). (b) Find null(T) and nullity(T).
b) More generally, find the matrix of the linear transformation T : R3 → R3 which...
b) More generally, find the matrix of the linear transformation T : R3 → R3 which is u1  orthogonal projection onto the line spanu2. Find the matrix of T. Prove that u3 T ◦ T = T and prove that T is not invertible.
10 Linear Transformations. Let V = R2 and W = R3. Define T: V → W...
10 Linear Transformations. Let V = R2 and W = R3. Define T: V → W by T(x1, x2) = (x1 − x2, x1, x2). Find the matrix representation of T using the standard bases in both V and W 11 Let T :R3 →R3 be a linear transformation such that T(1, 0, 0) = (2, 4, −1), T(0, 1, 0) = (1, 3, −2), T(0, 0, 1) = (0, −2, 2). Compute T(−2, 4, −1).
(To find the trace using substitution) Substitute the equation for each coordinate plane (z=0, x=0, or...
(To find the trace using substitution) Substitute the equation for each coordinate plane (z=0, x=0, or y=0 one at at time) into the quadric surface equation. Simplify the equation and write it in standard form. z=4x^2+3y^2 z=4x^2−y^2 4x^2+y^2−z^2=0
Let W = {(x, y, z, w) ∈ R 4 | x − z = 0...
Let W = {(x, y, z, w) ∈ R 4 | x − z = 0 and y + 2z = 0} (a) Find a basis for W. (b) Apply the Gram-Schmidt algorithm to find an orthogonal basis for the subspace (2) U = Span{(1, 0, 1, 0),(1, 1, 0, 0),(0, 1, 0, 1)}.
Let W be the subspace of R4 spanned by the vectors a = 3e1 − 4e2...
Let W be the subspace of R4 spanned by the vectors a = 3e1 − 4e2 and b = e2 + e3 + e4. Find the orthogonal projection of the vector v = [2, 0, 1, 0] onto W. Then calculate the distance of the point v from the subspace W.
Find an equation for the tangent plane to: z=arctan(x^3y^2)z at P=(-1,-2,-1.326) .
Find an equation for the tangent plane to: z=arctan(x^3y^2)z at P=(-1,-2,-1.326) .
Find the 3 * 3 matrix A corresponding to orthogonal projection onto the solution space of...
Find the 3 * 3 matrix A corresponding to orthogonal projection onto the solution space of the system below. 2x + 3y + z = 0; x - 3y - z = 0: Your solution should contain the following information: (a) The eigenvector(s) of A that is (are) contained in the solution space; (b) The eigenvector(s) of A that is (are) perpendicular to the solution space; (c) The corresponding eigenvalues for those eigenvectors.
(1 point) Consider the paraboloid z=x2+y2. The plane 5x−3y+z−3=0 cuts the paraboloid, its intersection being a...
(1 point) Consider the paraboloid z=x2+y2. The plane 5x−3y+z−3=0 cuts the paraboloid, its intersection being a curve. Find "the natural" parametrization of this curve. Hint: The curve which is cut lies above a circle in the xy-plane which you should parametrize as a function of the variable t so that the circle is traversed counterclockwise exactly once as t goes from 0 to 2*pi, and the paramterization starts at the point on the circle with largest x coordinate. Using that...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT