Question

Let G be a cyclic group; an element g ∈ G is called a generator of...

Let G be a cyclic group; an element g ∈ G is called a generator of G if G<g>. Let φ : G → G be an endomorphism of G, and let g be a generator of G. Show that φ is an automorphism if and only if φ(g) is a generator of G. Use this to find Aut(Z).

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let G be a group and a be an element of G. Let φ:Z→G be a...
Let G be a group and a be an element of G. Let φ:Z→G be a map defined by φ(n) =a^{n} for all n∈Z. Find the image φ(Z) and prove that φ(Z) a subgroup of G
Let G = <a> be a cyclic group of order 12. Describe explicitly all elements of...
Let G = <a> be a cyclic group of order 12. Describe explicitly all elements of Aut(G), the group of automorphisms of G. Indicate how you know that these are elements of Aut(G) and that these are the only elements of Aut(G).
Suppose that G is a cyclic group, with generator a. Prove that if H is a...
Suppose that G is a cyclic group, with generator a. Prove that if H is a subgroup of G then H is cyclic.
Let G be a cyclic group, and let x1, x2 be two elements that generate G...
Let G be a cyclic group, and let x1, x2 be two elements that generate G . Show that f : G → G by the assignment f(x1) = x2 is an isomorphism.
Let N and H be groups, and here for a homomorphism f: H --> Aut(N) =...
Let N and H be groups, and here for a homomorphism f: H --> Aut(N) = group automorphism, let N x_f H be the corresponding semi-direct product. Let g be in Aut(N), and  k  be in Aut(H),  Let C_g: Aut(N) --> Aut(N) be given by conjugation by g.  Now let  z :=  C_g * f * k: H --> Aut(N), where * means composition. Show that there is an isomorphism from Nx_f H to Nx_z H, which takes the natural...
8. Let g be an automorphism of the group G, and fa an inner automorphism, as...
8. Let g be an automorphism of the group G, and fa an inner automorphism, as defined in Problems 3 and 4. Show that g ◦fa ◦g−1 is an inner automorphism. Thus the group of inner automorphisms of G is a normal subgroup of the group of all automorphisms.
Let G be an Abelian group. Let k ∈ Z be nonzero. Define φ : G...
Let G be an Abelian group. Let k ∈ Z be nonzero. Define φ : G → G by φ(x) = x^ k . (a) Prove that φ is a group homomorphism. (b) Assume that G is finite and |G| is relatively prime to k. Prove that Ker φ = {e}.
Let I(G) denote the group of all inner automorphisms of a gorup G, and Aut(G) the...
Let I(G) denote the group of all inner automorphisms of a gorup G, and Aut(G) the group of all automorphisms of G. Show that I(G) is a normal subgroup of Aut(G).
Let G be a group of order 4. Prove that either G is cyclic or it...
Let G be a group of order 4. Prove that either G is cyclic or it is isomorphic to the Klein 4-group V4 = {1,(12)(34),(13)(24),(14)(23)}.
Let G be a group. g be an element of G. if <g^2>=<g^4> show that order...
Let G be a group. g be an element of G. if <g^2>=<g^4> show that order of g is finite.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT