Question

Use the three-point center-difference formula to approximate f ′ (0), where f(x) = e x ,...

Use the three-point center-difference formula to approximate f ′ (0), where f(x) = e x , for (a) h=0.1; (b) h=0.01; (c) h=0.001.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the function f(x) = sin(x). Suppose we want to approximate f 0 (0) by using...
Consider the function f(x) = sin(x). Suppose we want to approximate f 0 (0) by using a forward difference approximation and a stepsize of h. How small must h be in order to guarantee that the absolute error in our approximation is less than 0.01?
Given the function f(x, y) = e^(x)*sin(y) + e^(y)*sin(x) approximate f(0.1, -0.2) using P(0, 0).
Given the function f(x, y) = e^(x)*sin(y) + e^(y)*sin(x) approximate f(0.1, -0.2) using P(0, 0).
Let f(x)=sin⁡(x), where x is measured in radians. Calculate f^' (x=0.9) using h=0.1 h=0.01 h=0.001 Calculate...
Let f(x)=sin⁡(x), where x is measured in radians. Calculate f^' (x=0.9) using h=0.1 h=0.01 h=0.001 Calculate the error using the value of cos⁡(x=0.9). Use f^' (x)≈(f(x+h)-f(x-h))/2h.
a)Program a calculator or computer to use Euler's method to compute y(1), where y(x) is the...
a)Program a calculator or computer to use Euler's method to compute y(1), where y(x) is the solution of the given initial-value problem. (Give all answers to four decimal places.) dy dx + 3x2y = 9x2, y(0) = 4 h = 1     y(1) = h = 0.1     y(1) = h = 0.01     y(1) = h = 0.001     y(1) = (b) Verify that y = 3 + e−x3 is the exact solution of the differential equation. y = 3 + e−x3      ⇒     y'...
Calculate the average rate of change of the given function f over the intervals [a, a...
Calculate the average rate of change of the given function f over the intervals [a, a + h] where h = 1, 0.1, 0.01, 0.001, and 0.0001. f(x) = 8x2;  a = 0 h = 1     h = 0.1     h = 0.01     h = 0.001     h = 0.0001    
Let f(x)= a -bx^c + dx^e where a, b,c,d,e >0 and c<e. Suppose that f(x0)= 0...
Let f(x)= a -bx^c + dx^e where a, b,c,d,e >0 and c<e. Suppose that f(x0)= 0 and f '(x0)=0 for some x0>0. Prove that f(x) greater than or equal to 0 for x greater than or equal to 0
Please show all steps, thank you. Using the Taylor formula for f(x+h) and f(x-h) with f...
Please show all steps, thank you. Using the Taylor formula for f(x+h) and f(x-h) with f ''' in the error term, find the error of the approximate formula f '' (x) = (f(x+h)+f(x-h)-2f(x))/(h^2) in terms of f ''' (eta), for some point eta between x-h and x+h. Then give an upper bound for the absolute error assuming that |f ''' (t)| =< M for t between x-h and x+h.
let f(x)=ln(1+2x) a. find the taylor series expansion of f(x) with center at x=0 b. determine...
let f(x)=ln(1+2x) a. find the taylor series expansion of f(x) with center at x=0 b. determine the radius of convergence of this power series c. discuss if it is appropriate to use power series representation of f(x) to predict the valuesof f(x) at x= 0.1, 0.9, 1.5. justify your answe
Use simulation to approximate θ = Cov(U, e^U ) , where U is uniform on (0,...
Use simulation to approximate θ = Cov(U, e^U ) , where U is uniform on (0, 1) . Show your code. Provide at least two digits after the decimal point. Compare your approximation with the exact answer if you can.
1. Find the differential of f(x,y)=\sqrt{x + e^{4y}}f(x,y)= x+e^4y and use it to find the approximate...
1. Find the differential of f(x,y)=\sqrt{x + e^{4y}}f(x,y)= x+e^4y and use it to find the approximate change in the function f(x,y)f(x,y) as (x,y)(x,y) changes from (3,0)(3,0) to (2.6,0.1)(2.6,0.1).