Question

3. Let P(x) be a polynomial with P(0) > 0 and suppose that P has at...

3. Let P(x) be a polynomial with P(0) > 0 and suppose that P has at least one real zero which is not an integer multiple of π. Prove that there exists a solution to P(x) = sin2 x

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let p be a prime and m an integer. Suppose that the polynomial f(x) = x^4+mx+p...
Let p be a prime and m an integer. Suppose that the polynomial f(x) = x^4+mx+p is reducible over Q. Show that if f(x) has no zeros in Q, then p = 3.
Let p be an odd prime. Let f(x) ∈ Q(x) be an irreducible polynomial of degree...
Let p be an odd prime. Let f(x) ∈ Q(x) be an irreducible polynomial of degree p whose Galois group is the dihedral group D_2p of a regular p-gon. Prove that f (x) has either all real roots or precisely one real root.
Let p and q be two real numbers with p > 0. Show that the equation...
Let p and q be two real numbers with p > 0. Show that the equation x^3 + px +q= 0 has exactly one real solution. (Hint: Show that f'(x) is not 0 for any real x and then use Rolle's theorem to prove the statement by contradiction)
Let f(x) and g(x) be polynomials and suppose that we have f(a) = g(a) for all...
Let f(x) and g(x) be polynomials and suppose that we have f(a) = g(a) for all real numbers a. In this case prove that f(x) and g(x) have exactly the same coefficients. [Hint: Consider the polynomial h(x) = f(x) − g(x). If h(x) has at least one nonzero coefficient then the equation h(x) = 0 has finitely many solutions.]
1. A zero of a polynomial p(x) ∈ R[x] is an element α ∈ R such...
1. A zero of a polynomial p(x) ∈ R[x] is an element α ∈ R such that p(α) = 0. Prove or disprove: There exists a polynomial p(x) ∈ Z6[x] of degree n with more than n distinct zeros. 2. Consider the subgroup H = {1, 11} of U(20) = {1, 3, 7, 9, 11, 13, 17, 19}. (a) List the (left) cosets of H in U(20) (b) Why is H normal? (c) Write the Cayley table for U(20)/H. (d)...
A. Let p and r be real numbers, with p < r. Using the axioms of...
A. Let p and r be real numbers, with p < r. Using the axioms of the real number system, prove there exists a real number q so that p < q < r. B. Let f: R→R be a polynomial function of even degree and let A={f(x)|x ∈R} be the range of f. Define f such that it has at least two terms. 1. Using the properties and definitions of the real number system, and in particular the definition...
Let f(x) be a cubic polynomial of the form x^3 +ax^2 +bx+c with real coefficients. 1....
Let f(x) be a cubic polynomial of the form x^3 +ax^2 +bx+c with real coefficients. 1. Deduce that either f(x) factors in R[x] as the product of three degree-one polynomials, or f(x) factors in R[x] as the product of a degree-one polynomial and an irreducible degree-two polynomial. 2.Deduce that either f(x) has three real roots (counting multiplicities) or f(x) has one real root and two non-real (complex) roots that are complex conjugates of each other.
Let g (x) = 2^-x −x − x^3, defined on [0,1] (a) Use the Intermediate Value...
Let g (x) = 2^-x −x − x^3, defined on [0,1] (a) Use the Intermediate Value Theorem (TVI) to prove that the equation g (x) = 0 has a solution. (b) Use the Average Value Theorem (TVM) to show that the solution in part (a) is the only one that exists.
For each polynomial f(x) ∈ Z[x], let f ' (x) denote its derivative, which is also...
For each polynomial f(x) ∈ Z[x], let f ' (x) denote its derivative, which is also a polynomial in Z[x]. Let R be the following subset of Z[x]: R = {f(x) ∈ Z[x] | f ' (0) = 0}. (a) Prove that R is a subring of Z[x]. (b) Prove that R is not an ideal of Z[x].
The equation of a degree 3 polynomial P(x) given that P(0)=1 , P'(1)=3 , P''(2)= -3
The equation of a degree 3 polynomial P(x) given that P(0)=1 , P'(1)=3 , P''(2)= -3
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT