Question

(Linear Algebra) Consider the difference equation. yk+2 - 4yk+1 + 4yk = 0, for all k...

(Linear Algebra) Consider the difference equation.

yk+2 - 4yk+1 + 4yk = 0, for all k

(a) After using auxiliary equation, the solutions have the form rk and k(rk). Find the root, r, and show that yk = k(rk) is a solution.

(b) Show that rk and k(rk) are linearly independent and form the general solution of the difference equation.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the differential equation x^2y′′ − 3xy′ − 5y = 0. Note that this is not...
Consider the differential equation x^2y′′ − 3xy′ − 5y = 0. Note that this is not a constant coefficient differential equation, but it is linear. The theory of linear differential equations states that the dimension of the space of all homogeneous solutions equals the order of the differential equation, so that a fundamental solution set for this equation should have two linearly fundamental solutions. • Assume that y = x^r is a solution. Find the resulting characteristic equation for r....
Consider the second-order homogeneous linear equation y''−6y'+9y=0. (a) Use the substitution y=e^(rt) to attempt to find...
Consider the second-order homogeneous linear equation y''−6y'+9y=0. (a) Use the substitution y=e^(rt) to attempt to find two linearly independent solutions to the given equation. (b) Explain why your work in (a) only results in one linearly independent solution, y1(t). (c) Verify by direct substitution that y2=te^(3t) is a solution to y''−6y'+9y=0. Explain why this function is linearly independent from y1 found in (a). (d) State the general solution to the given equation
Consider the differential equation 4x2y′′ − 8x2y′ + (4x2 + 1)y = 0 (a) Verify that...
Consider the differential equation 4x2y′′ − 8x2y′ + (4x2 + 1)y = 0 (a) Verify that x0 = 0 is a regular singular point of the differential equation and then find one solution as a Frobenius series centered at x0 = 0. The indicial equation has a single root with multiplicity two. Therefore the differential equation has only one Frobenius series solution. Write your solution in terms of familiar elementary functions. (b) Use Reduction of Order to find a second...
Consider the differential equation t 2 y" + 3ty' + y = 0, t > 0....
Consider the differential equation t 2 y" + 3ty' + y = 0, t > 0. (a) Check that y1(t) = t −1 is a solution to this equation. (b) Find another solution y2(t) such that y1(t) and y2(t) are linearly independent (that is, y1(t) and y2(t) form a fundamental set of solutions for the differential equation)
Topic: Math - Linear Algebra Focus: Matrices, Linear Independence and Linear Dependence Consider four vectors v1...
Topic: Math - Linear Algebra Focus: Matrices, Linear Independence and Linear Dependence Consider four vectors v1 = [1,1,1,1], v2 = [-1,0,1,2], v3 = [a,1,0,b], and v4 = [3,2,a+b,0], where a and b are parameters. Find all conditions on the values of a and b (if any) for which: 1. The number of linearly independent vectors in this collection is 1. 2. The number of linearly independent vectors in this collection is 2. 3. The number of linearly independent vectors in...
Consider the nonlinear second-order differential equation 4x"+4x'+2(k^2)(x^2)− 1/2 =0, where k > 0 is a constant....
Consider the nonlinear second-order differential equation 4x"+4x'+2(k^2)(x^2)− 1/2 =0, where k > 0 is a constant. Answer to the following questions. (a) Show that there is no periodic solution in a simply connected region R={(x,y) ∈ R2 | x <0}. (Hint: Use the corollary to Theorem 11.5.1>> If symply connected region R either contains no critical points of plane autonomous system or contains a single saddle point, then there are no periodic solutions. ) (b) Derive a plane autonomous system...
Given that x =0 is a regular singular point of the given differential equation, show that...
Given that x =0 is a regular singular point of the given differential equation, show that the indicial roots of the singularity do not differ by an integer. Use the method of Frobenius to obtain to linearly independent series solutions about x = 0. Form the general solution on (0, ∞) 3xy”+(2 – x)y’ – y = 0
Consider the differential equation x^2 y' '+ x^2 y' + (x-2)y = 0 a) Show that...
Consider the differential equation x^2 y' '+ x^2 y' + (x-2)y = 0 a) Show that x = 0 is a regular singular point for the equation. b) For a series solution of the form y = ∑∞ n=0 an x^(n+r)   a0 ̸= 0 of the differential equation about x = 0, find a recurrence relation that defines the coefficients an’s corresponding to the larger root of the indicial equation. Do not solve the recurrence relation.
1.Show that cos 2t, sin 2t, and e^5t are linearly independent and form a fundamental set...
1.Show that cos 2t, sin 2t, and e^5t are linearly independent and form a fundamental set of solutions for the equation: y ′′′ − 5y ′′ + 4y ′ − 20y = 0 2.Find the general solution to the equation: y ′′′ − y ′′ − 4y ′ + 4y = 0
7. Given that x =0 is a regular singular point of the given differential equation, show...
7. Given that x =0 is a regular singular point of the given differential equation, show that the indicial roots of the singularity do not differ by an integer. Use the method of Frobenius to obtain two linearly independent series solutions about x = 0. Form the general solution on (0, ∞) 2xy”- y’ + y = 0