Question

Let G = (X, E) be a connected graph. The distance between two vertices x and...

Let G = (X, E) be a connected graph. The distance between two vertices x and y of G is the shortest length of the paths linking x and y. This distance is denoted by d(x, y). We call the center of the graph any vertex x such that the quantity max y∈X d(x, y) is the smallest possible. Show that if G is a tree then G has either one center or two centers which are then neighbors

Homework Answers

Answer #1

  let G be a tree having more than two vertices,then G has two or more pendant vertices. Delete all the pendant vertices from G, the resulting graph G' is again a tree. The removal of all pendant vertices from G uniformly reduces the eccentricities of the remaining vertices (vertices in G') by one. Therefore the centers of G are also the centers of G'. From G' remove all pendant vertices and get another tree G''.  Continuing this process, we either get a vertex, which is a center of G, or an edge whose end vertices are the two centers of G.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The distance between two connected nodes in a graph is the length (number of edges) of...
The distance between two connected nodes in a graph is the length (number of edges) of the shortest path connecting them. The diameter of a connected graph is the maximum distance between any two of its nodes. Let v be an arbitrary vertex in a graph G. If every vertex is within distance d of v, then show that the diameter of the graph is at most 2d.
let G be a connected graph such that the graph formed by removing vertex x from...
let G be a connected graph such that the graph formed by removing vertex x from G is disconnected for all but exactly 2 vertices of G. Prove that G must be a path.
A spanning tree of connected graph G = (V, E) is an acyclic connected subgraph (V,...
A spanning tree of connected graph G = (V, E) is an acyclic connected subgraph (V, E0 ) with the same vertices as G. Show that every connected graph G = (V, E) contains a spanning tree. (It is the connected subgraph (V, E0 ) with the smallest number of edges.)
Let G be a simple graph with at least two vertices. Prove that there are two...
Let G be a simple graph with at least two vertices. Prove that there are two distinct vertices x, y of G such that deg(x)= deg(y).
Let G = (V,E) be a graph with n vertices and e edges. Show that the...
Let G = (V,E) be a graph with n vertices and e edges. Show that the following statements are equivalent: 1. G is a tree 2. G is connected and n = e + 1 3. G has no cycles and n = e + 1 4. If u and v are vertices in G, then there exists a unique path connecting u and v.
(a) Let L be a minimum edge-cut in a connected graph G with at least two...
(a) Let L be a minimum edge-cut in a connected graph G with at least two vertices. Prove that G − L has exactly two components. (b) Let G an eulerian graph. Prove that λ(G) is even.
Exercise 10.5.4: Edge connectivity between two vertices. Two vertices v and w in a graph G...
Exercise 10.5.4: Edge connectivity between two vertices. Two vertices v and w in a graph G are said to be 2-edge-connected if the removal of any edge in the graph leaves v and w in the same connected component. (a) Prove that G is 2-edge-connected if every pair of vertices in G are 2-edge-connected.
Let G=(V,E) be a connected graph with |V|≥2 Prove that ∀e∈E the graph G∖e=(V,E∖{e}) is disconnected,...
Let G=(V,E) be a connected graph with |V|≥2 Prove that ∀e∈E the graph G∖e=(V,E∖{e}) is disconnected, then G is a tree.
30. a) Show if G is a connected planar simple graph with v vertices and e...
30. a) Show if G is a connected planar simple graph with v vertices and e edges with v ≥ 3 then e ≤ 3v−6. b) Further show if G has no circuits of length 3 then e ≤ 2v−4.
I.15: If G is a simple graph with at least two vertices, prove that G has...
I.15: If G is a simple graph with at least two vertices, prove that G has two vertices of the same degree.    Hint: Let G have n vertices. What are possible different degree values? Different values if G is connected?