Question

find all eigenvalues and eigenvectors of the given matrix A= [3 2 2 1 4 1...

find all eigenvalues and eigenvectors of the given matrix

A= [3 2 2

1 4 1

-2 -4 -1]

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Find all eigenvalues and eigenvectors for the 3x3 matrix A= 1 3 2 -1 2   1...
Find all eigenvalues and eigenvectors for the 3x3 matrix A= 1 3 2 -1 2   1 4 -1 -1
Find all eigenvectors of this 3x3 matrix, when the eigenvalues are lambda = 1, 2, 3...
Find all eigenvectors of this 3x3 matrix, when the eigenvalues are lambda = 1, 2, 3 4 0 1 -2 1 0 -2 0 1
Find the eigenvalues and the eigenvectors corresponding to them of the matrix -2 1 3 0...
Find the eigenvalues and the eigenvectors corresponding to them of the matrix -2 1 3 0 -2 6 0 0 4
Normally, we start with a matrix and find the eigenvalues and eigenvectors. But it’s interesting to...
Normally, we start with a matrix and find the eigenvalues and eigenvectors. But it’s interesting to see if this process can be performed in reverse. Suppose that a 2x2 matrix has eigenvalues of +2 and -1 but no info on the eigenvectors. Can you find the matrix? How many matrices would have these eigenvalues?
Normally, we start with a matrix and find the eigenvalues and eigenvectors. But it’s interesting to...
Normally, we start with a matrix and find the eigenvalues and eigenvectors. But it’s interesting to see if this process can be performed in reverse. Suppose that a 2x2 matrix has eigenvalues of +2 and -1 but no info on the eigenvectors. Can you find the matrix? How many matrices would have these eigenvalues?
Complex Eigenstuff Compute the eigenvalues and eigenvectors for the given matrix A. List the eigenvalues so...
Complex Eigenstuff Compute the eigenvalues and eigenvectors for the given matrix A. List the eigenvalues so the first one has negative imaginary part. Write the corresponding eigenvectors in the form [u+iv1]. If there is only one eigenvector, leave the entries for the second eigenvalue and eigenvector blank. A=[4 -3 3 4]
Find the characteristic equation and the eigenvalues (and corresponding eigenvectors) of the matrix. 0 −3 5...
Find the characteristic equation and the eigenvalues (and corresponding eigenvectors) of the matrix. 0 −3 5 −4 4 −10 0 0 4 (a) the characteristic equation (b) the eigenvalues (Enter your answers from smallest to largest.) (λ1, λ2, λ3) = the corresponding eigenvectors x1 = x2 = x3 =
The matrix [−1320−69] has eigenvalues λ1=−1 and λ2=−3. Find eigenvectors corresponding to these eigenvalues. v⃗ 1=...
The matrix [−1320−69] has eigenvalues λ1=−1 and λ2=−3. Find eigenvectors corresponding to these eigenvalues. v⃗ 1= ⎡⎣⎢⎢ ⎤⎦⎥⎥ and v⃗ 2= ⎡⎣⎢⎢ ⎤⎦⎥⎥ Find the solution to the linear system of differential equations [x′1 x′2]=[−13 20−6 9][x1 x2] satisfying the initial conditions [x1(0)x2(0)]=[6−9]. x1(t)= ______ x2(t)= _____
find eigenvalues and eigenvectors of the matrix ((0.6 0.4),(0.2 0.8))
find eigenvalues and eigenvectors of the matrix ((0.6 0.4),(0.2 0.8))
4. Let A = [-5 -5] [5 -5] a. Find the eigenvalues and eigenvectors for A....
4. Let A = [-5 -5] [5 -5] a. Find the eigenvalues and eigenvectors for A. b. Find an invertible matrix P and a matrix C of the form [a -b] such that A=PCP-1. [b a] c. For the transformation given by T(x) = Ax find the scaling factor and the angle of rotation.