Question

Let p and q be any two distinct prime numbers and define the relation a R...

Let p and q be any two distinct prime numbers and define the relation a R b on integers a,b by: a R b iff b-a is divisible by both p and q.

I need to prove that:

a) R is an equivalence relation. (which I have)

b) The equivalence classes of R correspond to the elements of  ℤpq. That is: [a] = [b] as equivalence classes of R if and only if [a] = [b] as elements of ℤpq

I can use the following lemma to prove b: "If p is prime and p|mn, then p|m or p|n"

Could you show me how to prove b? Preferably with as many steps as possible so it's clear what's happening in each step?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let p and q be any two distinct prime numbers and define the relation a R...
Let p and q be any two distinct prime numbers and define the relation a R b on integers a,b by: a R b iff b-a is divisible by both p and q. For this relation R: Show that the equivalence classes of R correspond to the elements of  ℤpq. That is: [a] = [b] as equivalence classes of R if and only if [a] = [b] as elements of ℤpq. you may use the following lemma: If p is prime...
Let p and q be any two distinct prime numbers and define the relation a R...
Let p and q be any two distinct prime numbers and define the relation a R b on integers a,b by: a R b iff b-a is divisible by both p and q. For this relation R: Prove that R is an equivalence relation. you may use the following lemma: If p is prime and p|mn, then p|m or p|n
Let X be finite set . Let R be the relation on P(X). A,B∈P(X) A R...
Let X be finite set . Let R be the relation on P(X). A,B∈P(X) A R B Iff |A|=|B| prove R is an equivalence relation
2. Define a relation R on pairs of real numbers as follows: (a, b)R(c, d) iff...
2. Define a relation R on pairs of real numbers as follows: (a, b)R(c, d) iff either a < c or both a = c and b ≤ d. Is R a partial order? Why or why not? If R is a partial order, draw a diagram of some of its elements. 3. Define a relation R on integers as follows: mRn iff m + n is even. Is R a partial order? Why or why not? If R is...
Determine the distance equivalence classes for the relation R is defined on ℤ by a R...
Determine the distance equivalence classes for the relation R is defined on ℤ by a R b if |a - 2| = |b - 2|. I had to prove it was an equivalence relation as well, but that part was not hard. Just want to know if the logic and presentation is sound for the last part: 8.48) A relation R is defined on ℤ by a R b if |a - 2| = |b - 2|. Prove that R...
Let R be the relation on Z defined by: For any a, b ∈ Z ,...
Let R be the relation on Z defined by: For any a, b ∈ Z , aRb if and only if 4 | (a + 3b). (a) Prove that R is an equivalence relation. (b) Prove that for all integers a and b, aRb if and only if a ≡ b (mod 4)
Let p,q be prime numbers, not necessarily distinct. If a group G has order pq, prove...
Let p,q be prime numbers, not necessarily distinct. If a group G has order pq, prove that any proper subgroup (meaning a subgroup not equal to G itself) must be cyclic. Hint: what are the possible sizes of the subgroups?
Let S be a finite set and let P(S) denote the set of all subsets of...
Let S be a finite set and let P(S) denote the set of all subsets of S. Define a relation on P(S) by declaring that two subsets A and B are related if A and B have the same number of elements. (a) Prove that this is an equivalence relation. b) Determine the equivalence classes. c) Determine the number of elements in each equivalence class.
Consider all integers between 1 and pq where p and q are two distinct primes. We...
Consider all integers between 1 and pq where p and q are two distinct primes. We choose one of them, all with equal probability. a) What is the probability that we choose any given number? b) What is the probability that we choose a number that is i) relatively prime to p? ii) relatively prime to q? iii) relatively prime to pq?
Abstract Algebra I Corollary 1.26- Two equivalence classes of an equivalence relation are either disjoint or...
Abstract Algebra I Corollary 1.26- Two equivalence classes of an equivalence relation are either disjoint or equal. Corollary 2.11- Let a and b be two integers that are relatively prime. Then there exist integers r and s such that ar+bs=1. PLEASE ANSWER THE FOLLOWING: 1) Why is Corollary 1.26 true? 2) Why is Corollary 2.11 true?